Cargando…

Non-invasive assessment of Pulse Wave Transit Time (PWTT) is a poor predictor for intraoperative fluid responsiveness: a prospective observational trial (best-PWTT study)

BACKGROUND: Aim of this study is to test the predictive value of Pulse Wave Transit Time (PWTT) for fluid responsiveness in comparison to the established fluid responsiveness parameters pulse pressure (ΔPP) and corrected flow time (FTc) during major abdominal surgery. METHODS: Forty patients undergo...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukui, Kimiko, Wirkus, Johannes M., Hartmann, Erik K., Schmidtmann, Irene, Pestel, Gunther J., Griemert, Eva-Verena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969649/
https://www.ncbi.nlm.nih.gov/pubmed/36849887
http://dx.doi.org/10.1186/s12871-023-02016-0
Descripción
Sumario:BACKGROUND: Aim of this study is to test the predictive value of Pulse Wave Transit Time (PWTT) for fluid responsiveness in comparison to the established fluid responsiveness parameters pulse pressure (ΔPP) and corrected flow time (FTc) during major abdominal surgery. METHODS: Forty patients undergoing major abdominal surgery were enrolled with continuous monitoring of PWTT (LifeScope® Modell J BSM-9101 Nihon Kohden Europe GmbH, Rosbach, Germany) and stroke volume (Esophageal Doppler Monitoring CardioQ-ODM®, Deltex Medical Ltd, Chichester, UK). In case of hypovolemia (difference in pulse pressure [∆PP] ≥ 9%, corrected flow time [FTc] ≤ 350 ms) a fluid bolus of 7 ml/kg ideal body weight was administered. Receiver operating characteristics (ROC) curves and corresponding areas under the curve (AUCs) were used to compare different methods of determining PWTT. A Wilcoxon test was used to discriminate fluid responders (increase in stroke volume of ≥ 10%) from non-responders. The predictive value of PWTT for fluid responsiveness was compared by testing for differences between ROC curves of PWTT, ΔPP and FTc using the methods by DeLong. RESULTS: AUCs (area under the ROC-curve) to predict fluid responsiveness for PWTT-parameters were 0.61 (raw c finger Q), 0.61 (raw c finger R), 0.57 (raw c ear Q), 0.53 (raw c ear R), 0.54 (raw non-c finger Q), 0.52 (raw non-c finger R), 0.50 (raw non-c ear Q), 0.55 (raw non-c ear R), 0.63 (∆ c finger Q), 0.61 (∆ c finger R), 0.64 (∆ c ear Q), 0.66 (∆ c ear R), 0.59 (∆ non-c finger Q), 0.57 (∆ non-c finger R), 0.57 (∆ non-c ear Q), 0.61 (∆ non-c ear R) [raw measurements vs. ∆ = respiratory variation; c = corrected measurements according to Bazett’s formula vs. non-c = uncorrected measurements; Q vs. R = start of PWTT-measurements with Q- or R-wave in ECG; finger vs. ear = pulse oximetry probe location]. Hence, the highest AUC to predict fluid responsiveness by PWTT was achieved by calculating its respiratory variation (∆PWTT), with a pulse oximeter attached to the earlobe, using the R-wave in ECG, and correction by Bazett’s formula (AUC best-PWTT 0.66, 95% CI 0.54–0.79). ∆PWTT was sufficient to discriminate fluid responders from non-responders (p = 0.029). No difference in predicting fluid responsiveness was found between best-PWTT and ∆PP (AUC 0.65, 95% CI 0.51–0.79; p = 0.88), or best-PWTT and FTc (AUC 0.62, 95% CI 0.49–0.75; p = 0.68). CONCLUSION: ΔPWTT shows poor ability to predict fluid responsiveness intraoperatively. Moreover, established alternatives ΔPP and FTc did not perform better. TRIAL REGISTRATION: Prior to enrolement on clinicaltrials.gov (NC T03280953; date of registration 13/09/2017). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12871-023-02016-0.