Cargando…

Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations

To achieve the efficient removal of pharmaceutical wastes, novel photo-Fenton catalysts, iron-decorated boron nitride quantum dots (Fe@BNQDs) were prepared. Fe@BNQDs were characterized using XRD, SEM-EDX, FTIR, and UV-Vis spectrophotometry. The decoration of Fe on the surface of BNQDs enhanced the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Idrees, Shinwar A., Jamil, Lazgin A., Omer, Khalid M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969755/
https://www.ncbi.nlm.nih.gov/pubmed/36860532
http://dx.doi.org/10.1039/d3ra00234a
_version_ 1784897797101715456
author Idrees, Shinwar A.
Jamil, Lazgin A.
Omer, Khalid M.
author_facet Idrees, Shinwar A.
Jamil, Lazgin A.
Omer, Khalid M.
author_sort Idrees, Shinwar A.
collection PubMed
description To achieve the efficient removal of pharmaceutical wastes, novel photo-Fenton catalysts, iron-decorated boron nitride quantum dots (Fe@BNQDs) were prepared. Fe@BNQDs were characterized using XRD, SEM-EDX, FTIR, and UV-Vis spectrophotometry. The decoration of Fe on the surface of BNQDs enhanced the catalytic efficiency due to the photo-Fenton process. Photo-Fenton catalytic degradation of folic acid was investigated under UV and visible light. The influence of H(2)O(2), catalyst dose, and temperature on the degradation yield of folic acid was investigated using Response Surface Methodology. Moreover, the efficiency of the photocatalysts and kinetics was investigated. Radical trapping experiments revealed that holes were the main dominant species in the photo-Fenton degradation mechanism and BNQDs played active roles because of their hole extraction ability. Additionally, active species such as e(−) and O(2)(−)˙ have a medium effect. The computational simulation was utilized to provide insights into this fundamental process, and for this purpose, electronic and optical properties were calculated.
format Online
Article
Text
id pubmed-9969755
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-99697552023-02-28 Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations Idrees, Shinwar A. Jamil, Lazgin A. Omer, Khalid M. RSC Adv Chemistry To achieve the efficient removal of pharmaceutical wastes, novel photo-Fenton catalysts, iron-decorated boron nitride quantum dots (Fe@BNQDs) were prepared. Fe@BNQDs were characterized using XRD, SEM-EDX, FTIR, and UV-Vis spectrophotometry. The decoration of Fe on the surface of BNQDs enhanced the catalytic efficiency due to the photo-Fenton process. Photo-Fenton catalytic degradation of folic acid was investigated under UV and visible light. The influence of H(2)O(2), catalyst dose, and temperature on the degradation yield of folic acid was investigated using Response Surface Methodology. Moreover, the efficiency of the photocatalysts and kinetics was investigated. Radical trapping experiments revealed that holes were the main dominant species in the photo-Fenton degradation mechanism and BNQDs played active roles because of their hole extraction ability. Additionally, active species such as e(−) and O(2)(−)˙ have a medium effect. The computational simulation was utilized to provide insights into this fundamental process, and for this purpose, electronic and optical properties were calculated. The Royal Society of Chemistry 2023-02-27 /pmc/articles/PMC9969755/ /pubmed/36860532 http://dx.doi.org/10.1039/d3ra00234a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Idrees, Shinwar A.
Jamil, Lazgin A.
Omer, Khalid M.
Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title_full Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title_fullStr Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title_full_unstemmed Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title_short Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
title_sort efficient photo-fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969755/
https://www.ncbi.nlm.nih.gov/pubmed/36860532
http://dx.doi.org/10.1039/d3ra00234a
work_keys_str_mv AT idreesshinwara efficientphotofentoncatalysisusingmagneticironnanoparticlesdecoratedboronnitridequantumdotstheoreticalandexperimentalinvestigations
AT jamillazgina efficientphotofentoncatalysisusingmagneticironnanoparticlesdecoratedboronnitridequantumdotstheoreticalandexperimentalinvestigations
AT omerkhalidm efficientphotofentoncatalysisusingmagneticironnanoparticlesdecoratedboronnitridequantumdotstheoreticalandexperimentalinvestigations