Cargando…
Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum
Microparasites often exist as a collection of genetic ‘clones’ within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969858/ https://www.ncbi.nlm.nih.gov/pubmed/36860770 http://dx.doi.org/10.7717/peerj.14908 |
_version_ | 1784897810835963904 |
---|---|
author | Neal, Allison Sassi, Joshua Vardo-Zalik, Anne |
author_facet | Neal, Allison Sassi, Joshua Vardo-Zalik, Anne |
author_sort | Neal, Allison |
collection | PubMed |
description | Microparasites often exist as a collection of genetic ‘clones’ within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and abundance of complex infections in natural settings. Utilizing a natural dataset that spans more than 20 years, we examined the effects of drought conditions on infection complexity and prevalence in the lizard malaria parasite Plasmodium mexicanum and its vertebrate host, the western fence lizard, Sceloporus occidentalis. We analyzed data for 14,011 lizards sampled from ten sites over 34 years with an average infection rate of 16.2%. Infection complexity was assessed for 546 infected lizards sampled during the most recent 20 years. Our data illustrate significant, negative effects of drought-like conditions on infection complexity, with infection complexity expected to increase by a factor of 2.27 from the lowest to highest rainfall years. The relationship between rainfall and parasite prevalence is somewhat more ambiguous; when prevalence is modeled over the full range in years, a 50% increase in prevalence is predicted between the lowest and highest rainfall years, but this trend is not apparent or is reversed when data are analyzed over a shorter timeframe. To our knowledge, this is the first reported evidence for drought affecting the abundance of multi-clonal infections in malaria parasites. It is not yet clear what mechanism might connect drought with infection complexity, but the correlation we observed suggests that additional research on how drought influences parasite features like infection complexity, transmission rates and within-host competition may be worthwhile. |
format | Online Article Text |
id | pubmed-9969858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99698582023-02-28 Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum Neal, Allison Sassi, Joshua Vardo-Zalik, Anne PeerJ Ecology Microparasites often exist as a collection of genetic ‘clones’ within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and abundance of complex infections in natural settings. Utilizing a natural dataset that spans more than 20 years, we examined the effects of drought conditions on infection complexity and prevalence in the lizard malaria parasite Plasmodium mexicanum and its vertebrate host, the western fence lizard, Sceloporus occidentalis. We analyzed data for 14,011 lizards sampled from ten sites over 34 years with an average infection rate of 16.2%. Infection complexity was assessed for 546 infected lizards sampled during the most recent 20 years. Our data illustrate significant, negative effects of drought-like conditions on infection complexity, with infection complexity expected to increase by a factor of 2.27 from the lowest to highest rainfall years. The relationship between rainfall and parasite prevalence is somewhat more ambiguous; when prevalence is modeled over the full range in years, a 50% increase in prevalence is predicted between the lowest and highest rainfall years, but this trend is not apparent or is reversed when data are analyzed over a shorter timeframe. To our knowledge, this is the first reported evidence for drought affecting the abundance of multi-clonal infections in malaria parasites. It is not yet clear what mechanism might connect drought with infection complexity, but the correlation we observed suggests that additional research on how drought influences parasite features like infection complexity, transmission rates and within-host competition may be worthwhile. PeerJ Inc. 2023-02-24 /pmc/articles/PMC9969858/ /pubmed/36860770 http://dx.doi.org/10.7717/peerj.14908 Text en © 2023 Neal et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Ecology Neal, Allison Sassi, Joshua Vardo-Zalik, Anne Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title | Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title_full | Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title_fullStr | Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title_full_unstemmed | Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title_short | Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum |
title_sort | drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite plasmodium mexicanum |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969858/ https://www.ncbi.nlm.nih.gov/pubmed/36860770 http://dx.doi.org/10.7717/peerj.14908 |
work_keys_str_mv | AT nealallison droughtcorrelateswithreducedinfectioncomplexityandpossiblyprevalenceinadecadeslongstudyofthelizardmalariaparasiteplasmodiummexicanum AT sassijoshua droughtcorrelateswithreducedinfectioncomplexityandpossiblyprevalenceinadecadeslongstudyofthelizardmalariaparasiteplasmodiummexicanum AT vardozalikanne droughtcorrelateswithreducedinfectioncomplexityandpossiblyprevalenceinadecadeslongstudyofthelizardmalariaparasiteplasmodiummexicanum |