Cargando…

Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation

OBJECTIVE: The purpose of this study were to establish a model of quantitative evaluation that uses the population mean as a baseline of variations and describe variations derived from different types and systems using new concepts. METHODS: The observed datasets, including measurement data and rela...

Descripción completa

Detalles Bibliográficos
Autor principal: Hui, Liu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969859/
https://www.ncbi.nlm.nih.gov/pubmed/36860762
http://dx.doi.org/10.7717/peerj.14955
_version_ 1784897811070844928
author Hui, Liu
author_facet Hui, Liu
author_sort Hui, Liu
collection PubMed
description OBJECTIVE: The purpose of this study were to establish a model of quantitative evaluation that uses the population mean as a baseline of variations and describe variations derived from different types and systems using new concepts. METHODS: The observed datasets, including measurement data and relative data, were transformed to 0–1.0 using the population mean. Datasets derived from different types (same category of dataset, different categories of datasets, and datasets with the same baseline) were transformed using different methods. The ‘middle compared index’ (MCI) was used to describe the change in magnitude as follows: [a/(a+b)+(1−b)/(2−a−b)−1](1.7), where ‘a’ represents the number after the magnitude change and ‘b’ represents the number before the magnitude change. Actual data were used to observe the MCI’s ability to evaluate variations quantitatively. RESULTS: When the value before the magnitude change was equal to that after the magnitude change, the MCI was equal to 0; when the value before the magnitude change was equal to 0 and that after the magnitude change was equal to 1, the MCI was equal to 1. This implies the MCI is valid. When the value before the magnitude change was 0 and that after the magnitude change was 0.5, or when the value before the magnitude change was 0.5 and that after the magnitude change was 1.0, each MCI was approximately equal to 0.5. The values derived from the absolute, ratio, and MCI methods were different, indicating that the MCI is an independent index. CONCLUSION: The MCI perfectly performs as an evaluation model using the population mean as the baseline, and it may be more a reasonable index than the ratio or absolute methods. The MCI increases our understanding of quantitative variations in evaluation measures of association using new concepts.
format Online
Article
Text
id pubmed-9969859
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-99698592023-02-28 Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation Hui, Liu PeerJ Biochemistry OBJECTIVE: The purpose of this study were to establish a model of quantitative evaluation that uses the population mean as a baseline of variations and describe variations derived from different types and systems using new concepts. METHODS: The observed datasets, including measurement data and relative data, were transformed to 0–1.0 using the population mean. Datasets derived from different types (same category of dataset, different categories of datasets, and datasets with the same baseline) were transformed using different methods. The ‘middle compared index’ (MCI) was used to describe the change in magnitude as follows: [a/(a+b)+(1−b)/(2−a−b)−1](1.7), where ‘a’ represents the number after the magnitude change and ‘b’ represents the number before the magnitude change. Actual data were used to observe the MCI’s ability to evaluate variations quantitatively. RESULTS: When the value before the magnitude change was equal to that after the magnitude change, the MCI was equal to 0; when the value before the magnitude change was equal to 0 and that after the magnitude change was equal to 1, the MCI was equal to 1. This implies the MCI is valid. When the value before the magnitude change was 0 and that after the magnitude change was 0.5, or when the value before the magnitude change was 0.5 and that after the magnitude change was 1.0, each MCI was approximately equal to 0.5. The values derived from the absolute, ratio, and MCI methods were different, indicating that the MCI is an independent index. CONCLUSION: The MCI perfectly performs as an evaluation model using the population mean as the baseline, and it may be more a reasonable index than the ratio or absolute methods. The MCI increases our understanding of quantitative variations in evaluation measures of association using new concepts. PeerJ Inc. 2023-02-24 /pmc/articles/PMC9969859/ /pubmed/36860762 http://dx.doi.org/10.7717/peerj.14955 Text en © 2023 Hui https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Biochemistry
Hui, Liu
Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title_full Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title_fullStr Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title_full_unstemmed Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title_short Quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
title_sort quantitative evaluations of variations using the population mean as a baseline for bioinformatics interpretation
topic Biochemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969859/
https://www.ncbi.nlm.nih.gov/pubmed/36860762
http://dx.doi.org/10.7717/peerj.14955
work_keys_str_mv AT huiliu quantitativeevaluationsofvariationsusingthepopulationmeanasabaselineforbioinformaticsinterpretation