Cargando…
Bayesian Inference-Based Gaussian Mixture Models With Optimal Components Estimation Towards Large-Scale Synthetic Data Generation for In Silico Clinical Trials
Goal: To develop a computationally efficient and unbiased synthetic data generator for large-scale in silico clinical trials (CTs). Methods: We propose the BGMM-OCE, an extension of the conventional BGMM (Bayesian Gaussian Mixture Models) algorithm to provide unbiased estimations regarding the optim...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970043/ https://www.ncbi.nlm.nih.gov/pubmed/36860496 http://dx.doi.org/10.1109/OJEMB.2022.3181796 |
Ejemplares similares
-
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
Sharp Guarantees and Optimal Performance for Inference in Binary and Gaussian-Mixture Models †
por: Taheri, Hossein, et al.
Publicado: (2021) -
Variational Sparse Bayesian Learning for Estimation of Gaussian Mixture Distributed Wireless Channels
por: Kong, Lingjin, et al.
Publicado: (2021) -
The impact of ordinal scales on Gaussian mixture recovery
por: Haslbeck, Jonas M. B., et al.
Publicado: (2022) -
Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement
por: Ren, Ming Jun, et al.
Publicado: (2018)