Cargando…

Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations

Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analyti...

Descripción completa

Detalles Bibliográficos
Autores principales: McKerral, Jody C., Kleshnina, Maria, Ejov, Vladimir, Bartle, Louise, Mitchell, James G., Filar, Jerzy A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970096/
https://www.ncbi.nlm.nih.gov/pubmed/36848357
http://dx.doi.org/10.1371/journal.pone.0279838
_version_ 1784897851185168384
author McKerral, Jody C.
Kleshnina, Maria
Ejov, Vladimir
Bartle, Louise
Mitchell, James G.
Filar, Jerzy A.
author_facet McKerral, Jody C.
Kleshnina, Maria
Ejov, Vladimir
Bartle, Louise
Mitchell, James G.
Filar, Jerzy A.
author_sort McKerral, Jody C.
collection PubMed
description Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters’ contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude.
format Online
Article
Text
id pubmed-9970096
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99700962023-02-28 Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations McKerral, Jody C. Kleshnina, Maria Ejov, Vladimir Bartle, Louise Mitchell, James G. Filar, Jerzy A. PLoS One Research Article Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters’ contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude. Public Library of Science 2023-02-27 /pmc/articles/PMC9970096/ /pubmed/36848357 http://dx.doi.org/10.1371/journal.pone.0279838 Text en © 2023 McKerral et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
McKerral, Jody C.
Kleshnina, Maria
Ejov, Vladimir
Bartle, Louise
Mitchell, James G.
Filar, Jerzy A.
Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title_full Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title_fullStr Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title_full_unstemmed Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title_short Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations
title_sort empirical parameterisation and dynamical analysis of the allometric rosenzweig-macarthur equations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970096/
https://www.ncbi.nlm.nih.gov/pubmed/36848357
http://dx.doi.org/10.1371/journal.pone.0279838
work_keys_str_mv AT mckerraljodyc empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations
AT kleshninamaria empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations
AT ejovvladimir empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations
AT bartlelouise empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations
AT mitchelljamesg empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations
AT filarjerzya empiricalparameterisationanddynamicalanalysisoftheallometricrosenzweigmacarthurequations