Cargando…

LncRNA PANTR1 is Associated with Poor Prognostic and Suppresses Apoptosis in Glioma

Glioma is the most common tumor in the central nervous system. High-grade gliomas confer a poor prognosis, being a serious health and economic burden. Current literature suggests the important role of long noncoding RNA (lncRNA) in mammals, especially in tumorigenesis of various tumors. The function...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Fei, Hu, Jie, Zheng, Ping, Lv, Yisong, Liu, Hongyu, Zhang, Guiyun, Jiang, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970703/
https://www.ncbi.nlm.nih.gov/pubmed/36861062
http://dx.doi.org/10.1155/2023/8537036
Descripción
Sumario:Glioma is the most common tumor in the central nervous system. High-grade gliomas confer a poor prognosis, being a serious health and economic burden. Current literature suggests the important role of long noncoding RNA (lncRNA) in mammals, especially in tumorigenesis of various tumors. The functions of lncRNA POU3F3 adjacent noncoding transcript 1 (PANTR1) have been investigated in hepatocellular carcinoma but remain yet unclear in gliomas. We evaluated the role of PANTR1 in glioma cells using published data from The Cancer Genome Atlas (TCGA), then validated it by ex vivo experiments. To investigate the potential cellular mechanism of different levels of PANTR1 expression in glioma cells, we used siRNA-mediated knockdown in low-grade (grade II) cell lines and GBM (grade IV) cell lines (SW1088 and SHG44, respectively). On the molecular level, low expression of PANTR1 caused significantly reduced glioma cell viability and enhanced cell death. Moreover, we identified the importance of PANTR1 expression for cell migration in both cell lines, a critical foundation for invasiveness in recurrent gliomas. In conclusion, this study provides the first evidence that PANTR1 has a relevant role in human glioma by influencing cell viability and cell death.