Cargando…
Epi-DNNs: Epidemiological priors informed deep neural networks for modeling COVID-19 dynamics
Differential equations-based epidemic compartmental models and deep neural networks-based artificial intelligence (AI) models are powerful tools for analyzing and fighting the transmission of COVID-19. However, the capability of compartmental models is limited by the challenges of parameter estimati...
Autores principales: | Ning, Xiao, Jia, Linlin, Wei, Yongyue, Li, Xi-An, Chen, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970927/ https://www.ncbi.nlm.nih.gov/pubmed/36996662 http://dx.doi.org/10.1016/j.compbiomed.2023.106693 |
Ejemplares similares
-
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019) -
Convergence Behavior of DNNs with Mutual-Information-Based Regularization
por: Jónsson, Hlynur, et al.
Publicado: (2020) -
Fast Calorimeter Simulation in ATLAS with DNNs
por: Golling, Tobias, et al.
Publicado: (2020) -
Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics
por: Ning, Xiao, et al.
Publicado: (2023) -
Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images
por: Petrov, Yury, et al.
Publicado: (2023)