Cargando…

Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies, James S., Currie, Michael J., North, Rachel A., Scalise, Mariafrancesca, Wright, Joshua D., Copping, Jack M., Remus, Daniela M., Gulati, Ashutosh, Morado, Dustin R., Jamieson, Sam A., Newton-Vesty, Michael C., Abeysekera, Gayan S., Ramaswamy, Subramanian, Friemann, Rosmarie, Wakatsuki, Soichi, Allison, Jane R., Indiveri, Cesare, Drew, David, Mace, Peter D., Dobson, Renwick C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971032/
https://www.ncbi.nlm.nih.gov/pubmed/36849793
http://dx.doi.org/10.1038/s41467-023-36590-1
_version_ 1784898022941917184
author Davies, James S.
Currie, Michael J.
North, Rachel A.
Scalise, Mariafrancesca
Wright, Joshua D.
Copping, Jack M.
Remus, Daniela M.
Gulati, Ashutosh
Morado, Dustin R.
Jamieson, Sam A.
Newton-Vesty, Michael C.
Abeysekera, Gayan S.
Ramaswamy, Subramanian
Friemann, Rosmarie
Wakatsuki, Soichi
Allison, Jane R.
Indiveri, Cesare
Drew, David
Mace, Peter D.
Dobson, Renwick C. J.
author_facet Davies, James S.
Currie, Michael J.
North, Rachel A.
Scalise, Mariafrancesca
Wright, Joshua D.
Copping, Jack M.
Remus, Daniela M.
Gulati, Ashutosh
Morado, Dustin R.
Jamieson, Sam A.
Newton-Vesty, Michael C.
Abeysekera, Gayan S.
Ramaswamy, Subramanian
Friemann, Rosmarie
Wakatsuki, Soichi
Allison, Jane R.
Indiveri, Cesare
Drew, David
Mace, Peter D.
Dobson, Renwick C. J.
author_sort Davies, James S.
collection PubMed
description In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a “transport” domain and a “scaffold” domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na(+) and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an ‘elevator-with-an-operator’ mechanism.
format Online
Article
Text
id pubmed-9971032
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99710322023-03-01 Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter Davies, James S. Currie, Michael J. North, Rachel A. Scalise, Mariafrancesca Wright, Joshua D. Copping, Jack M. Remus, Daniela M. Gulati, Ashutosh Morado, Dustin R. Jamieson, Sam A. Newton-Vesty, Michael C. Abeysekera, Gayan S. Ramaswamy, Subramanian Friemann, Rosmarie Wakatsuki, Soichi Allison, Jane R. Indiveri, Cesare Drew, David Mace, Peter D. Dobson, Renwick C. J. Nat Commun Article In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a “transport” domain and a “scaffold” domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na(+) and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an ‘elevator-with-an-operator’ mechanism. Nature Publishing Group UK 2023-02-27 /pmc/articles/PMC9971032/ /pubmed/36849793 http://dx.doi.org/10.1038/s41467-023-36590-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Davies, James S.
Currie, Michael J.
North, Rachel A.
Scalise, Mariafrancesca
Wright, Joshua D.
Copping, Jack M.
Remus, Daniela M.
Gulati, Ashutosh
Morado, Dustin R.
Jamieson, Sam A.
Newton-Vesty, Michael C.
Abeysekera, Gayan S.
Ramaswamy, Subramanian
Friemann, Rosmarie
Wakatsuki, Soichi
Allison, Jane R.
Indiveri, Cesare
Drew, David
Mace, Peter D.
Dobson, Renwick C. J.
Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title_full Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title_fullStr Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title_full_unstemmed Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title_short Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter
title_sort structure and mechanism of a tripartite atp-independent periplasmic trap transporter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971032/
https://www.ncbi.nlm.nih.gov/pubmed/36849793
http://dx.doi.org/10.1038/s41467-023-36590-1
work_keys_str_mv AT daviesjamess structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT curriemichaelj structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT northrachela structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT scalisemariafrancesca structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT wrightjoshuad structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT coppingjackm structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT remusdanielam structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT gulatiashutosh structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT moradodustinr structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT jamiesonsama structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT newtonvestymichaelc structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT abeysekeragayans structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT ramaswamysubramanian structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT friemannrosmarie structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT wakatsukisoichi structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT allisonjaner structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT indivericesare structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT drewdavid structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT macepeterd structureandmechanismofatripartiteatpindependentperiplasmictraptransporter
AT dobsonrenwickcj structureandmechanismofatripartiteatpindependentperiplasmictraptransporter