Cargando…
Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats
Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971053/ https://www.ncbi.nlm.nih.gov/pubmed/36865651 http://dx.doi.org/10.1016/j.mex.2023.102074 |
_version_ | 1784898027332304896 |
---|---|
author | Vanzin, Gary Peel, Henry Wang, Weishi Bosworth, Lily Yang, Zhaoxun Vega, Michael A.P. Root, Colin Brady, Adam Mariscal, Giuliana Romero Rodríguez, Armando Arenazas Ticona, Juana Paredes, Lino Morales Sharp, Jonathan O. |
author_facet | Vanzin, Gary Peel, Henry Wang, Weishi Bosworth, Lily Yang, Zhaoxun Vega, Michael A.P. Root, Colin Brady, Adam Mariscal, Giuliana Romero Rodríguez, Armando Arenazas Ticona, Juana Paredes, Lino Morales Sharp, Jonathan O. |
author_sort | Vanzin, Gary |
collection | PubMed |
description | Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains. Hence, we have developed stable, scalable, and tunable laboratory reactor analogs that offer the capability to manipulate variables such as influent rates, aqueous geochemistry, light duration, and light intensity gradations within a controlled laboratory environment. The design is composed of an experimentally adaptable set of parallel flow-through reactors and controls that can contain field-harvested photosynthetic microbial mats (“biomat”) and could be adapted for analogous photosynthetically active sediments or microbial mats. The reactor system is contained within a framed laboratory cart that integrates programable LED photosynthetic spectrum lights. Peristaltic pumps are used to introduce specified growth media, environmentally derived, or synthetic waters at a constant rate, while a gravity-fed drain on the opposite end allows steady-state or temporally variable effluent to be monitored, collected, and analyzed. The design allows for dynamic customization based on experimental needs without confounding environmental pressures and can be easily adapted to study analogous aquatic, photosynthetically driven systems, particularly where biological processes are contained within benthos. The diel cycles of pH and dissolved oxygen (DO) are used as geochemical benchmarks for the interplay of photosynthetic and heterotrophic respiration and likeness to field systems. Unlike static microcosms, this flow-through system remains viable (based on pH and DO fluctuations) and has at present been maintained for more than a year with original field-based materials. • Lab-scale flow-through reactors enable controlled and accessible exploration of shallow, open water constructed wetland function and applications. • The footprint and operating parameters minimize resources and hazardous waste while allowing for hypothesis-driven experiments. • A parallel negative control reactor quantifies and minimizes experimental artifacts. |
format | Online Article Text |
id | pubmed-9971053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99710532023-03-01 Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats Vanzin, Gary Peel, Henry Wang, Weishi Bosworth, Lily Yang, Zhaoxun Vega, Michael A.P. Root, Colin Brady, Adam Mariscal, Giuliana Romero Rodríguez, Armando Arenazas Ticona, Juana Paredes, Lino Morales Sharp, Jonathan O. MethodsX Method Article Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains. Hence, we have developed stable, scalable, and tunable laboratory reactor analogs that offer the capability to manipulate variables such as influent rates, aqueous geochemistry, light duration, and light intensity gradations within a controlled laboratory environment. The design is composed of an experimentally adaptable set of parallel flow-through reactors and controls that can contain field-harvested photosynthetic microbial mats (“biomat”) and could be adapted for analogous photosynthetically active sediments or microbial mats. The reactor system is contained within a framed laboratory cart that integrates programable LED photosynthetic spectrum lights. Peristaltic pumps are used to introduce specified growth media, environmentally derived, or synthetic waters at a constant rate, while a gravity-fed drain on the opposite end allows steady-state or temporally variable effluent to be monitored, collected, and analyzed. The design allows for dynamic customization based on experimental needs without confounding environmental pressures and can be easily adapted to study analogous aquatic, photosynthetically driven systems, particularly where biological processes are contained within benthos. The diel cycles of pH and dissolved oxygen (DO) are used as geochemical benchmarks for the interplay of photosynthetic and heterotrophic respiration and likeness to field systems. Unlike static microcosms, this flow-through system remains viable (based on pH and DO fluctuations) and has at present been maintained for more than a year with original field-based materials. • Lab-scale flow-through reactors enable controlled and accessible exploration of shallow, open water constructed wetland function and applications. • The footprint and operating parameters minimize resources and hazardous waste while allowing for hypothesis-driven experiments. • A parallel negative control reactor quantifies and minimizes experimental artifacts. Elsevier 2023-02-14 /pmc/articles/PMC9971053/ /pubmed/36865651 http://dx.doi.org/10.1016/j.mex.2023.102074 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Method Article Vanzin, Gary Peel, Henry Wang, Weishi Bosworth, Lily Yang, Zhaoxun Vega, Michael A.P. Root, Colin Brady, Adam Mariscal, Giuliana Romero Rodríguez, Armando Arenazas Ticona, Juana Paredes, Lino Morales Sharp, Jonathan O. Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title | Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title_full | Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title_fullStr | Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title_full_unstemmed | Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title_short | Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
title_sort | scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971053/ https://www.ncbi.nlm.nih.gov/pubmed/36865651 http://dx.doi.org/10.1016/j.mex.2023.102074 |
work_keys_str_mv | AT vanzingary scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT peelhenry scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT wangweishi scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT bosworthlily scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT yangzhaoxun scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT vegamichaelap scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT rootcolin scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT bradyadam scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT mariscalgiulianaromero scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT rodriguezarmandoarenazas scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT ticonajuana scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT paredeslinomorales scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats AT sharpjonathano scalableandcustomizableparallelflowthroughreactorstoquantifybiologicalprocessesrelatedtocontaminantattenuationbyphotosyntheticwetlandmicrobialmats |