Cargando…
An approach based on multivariate distribution and Gaussian copulas to predict groundwater quality using DNN models in a data scarce environment
Machine Learning models have become a fruitful tool in water resources modelling. However, it requires a significant amount of datasets for training and validation, which poses challenges in the analysis of data scarce environments, particularly for poorly monitored basins. In such scenarios, using...
Autores principales: | Nafii, Ayoub, Lamane, Houda, Taleb, Abdeslam, El Bilali, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971125/ https://www.ncbi.nlm.nih.gov/pubmed/36865649 http://dx.doi.org/10.1016/j.mex.2023.102034 |
Ejemplares similares
-
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture
por: Ashrafi, Mahnaz, et al.
Publicado: (2022) -
Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
por: Fossaluza, Victor, et al.
Publicado: (2018) -
Investigating meteorological/groundwater droughts by copula to study anthropogenic impacts
por: Sadeghfam, Sina, et al.
Publicado: (2022) -
A unified Gaussian copula methodology for spatial regression analysis
por: Hughes, John
Publicado: (2022) -
Estimating Gaussian Copulas with Missing Data with and without Expert Knowledge
por: Kertel, Maximilian, et al.
Publicado: (2022)