Cargando…
Characterization and functional analyses of wheat TaPR1 genes in response to stripe rust fungal infection
The pathogenesis-related protein-1 (PR1) gene is important for plants to respond to various biotic and abiotic stresses. Unlike those in model plants, PR1 genes in wheat have not been systematically studied. Herein, we identified 86 potential TaPR1 wheat genes using bioinformatics tools and RNA sequ...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971213/ https://www.ncbi.nlm.nih.gov/pubmed/36849488 http://dx.doi.org/10.1038/s41598-023-30456-8 |
Sumario: | The pathogenesis-related protein-1 (PR1) gene is important for plants to respond to various biotic and abiotic stresses. Unlike those in model plants, PR1 genes in wheat have not been systematically studied. Herein, we identified 86 potential TaPR1 wheat genes using bioinformatics tools and RNA sequencing. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the TaPR1 genes were involved in the salicylic acid signalling pathway, MAPK signalling pathway, and phenylalanine metabolism in response to Pst-CYR34 infection. Ten of the TaPR1 genes were structurally characterized and validated by RT‒PCR. One particular gene, TaPR1-7, was found to be associated with resistance to Puccinia striiformis f. sp. tritici (Pst) in a biparental wheat population. Virus-induced gene silencing showed that TaPR1-7 is important for Pst resistance in wheat. This study provides the first comprehensive study on wheat PR1 genes, improving our overall understanding of these genes in plant defenses, particularly against stripe rust. |
---|