Cargando…
Design and evaluation of short-term monitoring campaigns for long-term air pollution exposure assessment
BACKGROUND: Short-term mobile monitoring campaigns to estimate long-term air pollution levels are becoming increasingly common. Still, many campaigns have not conducted temporally-balanced sampling, and few have looked at the implications of such study designs for epidemiologic exposure assessment....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971335/ https://www.ncbi.nlm.nih.gov/pubmed/36045136 http://dx.doi.org/10.1038/s41370-022-00470-5 |
Sumario: | BACKGROUND: Short-term mobile monitoring campaigns to estimate long-term air pollution levels are becoming increasingly common. Still, many campaigns have not conducted temporally-balanced sampling, and few have looked at the implications of such study designs for epidemiologic exposure assessment. OBJECTIVE: We carried out a simulation study using fixed-site air quality monitors to better understand how different short-term monitoring designs impact the resulting exposure surfaces. METHODS: We used Monte Carlo resampling to simulate three archetypal short-term monitoring sampling designs using oxides of nitrogen (NOx) monitoring data from 69 regulatory sites in California: a year-around Balanced Design that sampled during all seasons of the year, days of the week, and all or various hours of the day; a temporally reduced Rush Hours Design; and a temporally reduced Business Hours Design. We evaluated the performance of each design’s land use regression prediction model. RESULTS: The Balanced Design consistently yielded the most accurate annual averages; while the reduced Rush Hours and Business Hours Designs generally produced more biased results. SIGNIFICANCE: A temporally-balanced sampling design is crucial for short-term campaigns such as mobile monitoring aiming to assess long-term exposure in epidemiologic cohorts. |
---|