Cargando…
Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells
BACKGROUNDS: Targeting breast cancer stem cells with the CD44+/CD24- phenotype is critical for complete eradication of cancer cells due to its Self-renewal, differentiation, and therapeutic resistance ability. Quercetin is a popular flavonoid with lower adverse effects and has anti-tumor properties....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971456/ https://www.ncbi.nlm.nih.gov/pubmed/36579996 http://dx.doi.org/10.31557/APJCP.2022.23.12.4145 |
_version_ | 1784898102366306304 |
---|---|
author | Azizi, Ebrahim Fouladdel, Shamileh Komeili Movahhed, Tahereh Modaresi, Farzan Barzegar, Elmira Ghahremani, Mohammad H Ostad, Seyed Naser Atashpour, Shekoufeh |
author_facet | Azizi, Ebrahim Fouladdel, Shamileh Komeili Movahhed, Tahereh Modaresi, Farzan Barzegar, Elmira Ghahremani, Mohammad H Ostad, Seyed Naser Atashpour, Shekoufeh |
author_sort | Azizi, Ebrahim |
collection | PubMed |
description | BACKGROUNDS: Targeting breast cancer stem cells with the CD44+/CD24- phenotype is critical for complete eradication of cancer cells due to its Self-renewal, differentiation, and therapeutic resistance ability. Quercetin is a popular flavonoid with lower adverse effects and has anti-tumor properties. Therefore, we assessed the anticancer activity of Quercetin and Doxorubicin alone and in combination in the T47D cells of human breast cancer and their isolated Cancer stem cells (CSCs). MATERIALS AND METHODS: The human breast cancer cell line T47D was used for this experiment. T47D CSCs were isolated by magnetic bead sorting using the MACS system. The anticancer activity of Quercetin and Doxorubicin alone and in combination were evaluated using MTT cytotoxicity assay and cell cycle distribution and apoptosis induction by flow cytometry analysis. RESULTS: We have shown that almost 1% of T47D cell populations are made up of CD44+/CD24- cells, which considered as cancer stem cells. Quercetin and Doxorubicin alone or in combination inhibited cell proliferation and induced apoptosis in breast cancer T47D cells and in lower extent in CD44+/CD24- cells. Quercetin significantly strengthened Doxorubicin’s cytotoxicity and apoptosis induction in both cell populations. Quercetin and Doxorubicin and their combination induced G2/M arrest in the T47D cells and to a lesser extent in isolated CSCs. A value of p < 0.05 was considered as indicating a statistically significant difference. CONCLUSION: These outcomes suggested that CSCs are a minor population of cancer cells, which play a significant role in drug resistance by being quiescent, slow cycling and resistance to apoptosis. Furthermore, our data showed that adding Quercetin to Doxorubicin is an effective approach for the treatment of both CSCs and bulk tumor cells. |
format | Online Article Text |
id | pubmed-9971456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | West Asia Organization for Cancer Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-99714562023-03-01 Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells Azizi, Ebrahim Fouladdel, Shamileh Komeili Movahhed, Tahereh Modaresi, Farzan Barzegar, Elmira Ghahremani, Mohammad H Ostad, Seyed Naser Atashpour, Shekoufeh Asian Pac J Cancer Prev Research Article BACKGROUNDS: Targeting breast cancer stem cells with the CD44+/CD24- phenotype is critical for complete eradication of cancer cells due to its Self-renewal, differentiation, and therapeutic resistance ability. Quercetin is a popular flavonoid with lower adverse effects and has anti-tumor properties. Therefore, we assessed the anticancer activity of Quercetin and Doxorubicin alone and in combination in the T47D cells of human breast cancer and their isolated Cancer stem cells (CSCs). MATERIALS AND METHODS: The human breast cancer cell line T47D was used for this experiment. T47D CSCs were isolated by magnetic bead sorting using the MACS system. The anticancer activity of Quercetin and Doxorubicin alone and in combination were evaluated using MTT cytotoxicity assay and cell cycle distribution and apoptosis induction by flow cytometry analysis. RESULTS: We have shown that almost 1% of T47D cell populations are made up of CD44+/CD24- cells, which considered as cancer stem cells. Quercetin and Doxorubicin alone or in combination inhibited cell proliferation and induced apoptosis in breast cancer T47D cells and in lower extent in CD44+/CD24- cells. Quercetin significantly strengthened Doxorubicin’s cytotoxicity and apoptosis induction in both cell populations. Quercetin and Doxorubicin and their combination induced G2/M arrest in the T47D cells and to a lesser extent in isolated CSCs. A value of p < 0.05 was considered as indicating a statistically significant difference. CONCLUSION: These outcomes suggested that CSCs are a minor population of cancer cells, which play a significant role in drug resistance by being quiescent, slow cycling and resistance to apoptosis. Furthermore, our data showed that adding Quercetin to Doxorubicin is an effective approach for the treatment of both CSCs and bulk tumor cells. West Asia Organization for Cancer Prevention 2022-12 /pmc/articles/PMC9971456/ /pubmed/36579996 http://dx.doi.org/10.31557/APJCP.2022.23.12.4145 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.(https://creativecommons.org/licenses/by-nc/4.0/) |
spellingShingle | Research Article Azizi, Ebrahim Fouladdel, Shamileh Komeili Movahhed, Tahereh Modaresi, Farzan Barzegar, Elmira Ghahremani, Mohammad H Ostad, Seyed Naser Atashpour, Shekoufeh Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title | Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title_full | Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title_fullStr | Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title_full_unstemmed | Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title_short | Quercetin Effects on Cell Cycle Arrest and Apoptosis and Doxorubicin Activity in T47D Cancer Stem Cells |
title_sort | quercetin effects on cell cycle arrest and apoptosis and doxorubicin activity in t47d cancer stem cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971456/ https://www.ncbi.nlm.nih.gov/pubmed/36579996 http://dx.doi.org/10.31557/APJCP.2022.23.12.4145 |
work_keys_str_mv | AT aziziebrahim quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT fouladdelshamileh quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT komeilimovahhedtahereh quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT modaresifarzan quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT barzegarelmira quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT ghahremanimohammadh quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT ostadseyednaser quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells AT atashpourshekoufeh quercetineffectsoncellcyclearrestandapoptosisanddoxorubicinactivityint47dcancerstemcells |