Cargando…
A multi-scale pooling convolutional neural network for accurate steel surface defects classification
Surface defect detection is an important technique to realize product quality inspection. In this study, we develop an innovative multi-scale pooling convolutional neural network to accomplish high-accuracy steel surface defect classification. The model was built based on SqueezeNet, and experiments...
Autores principales: | Fu, Guizhong, Zhang, Zengguang, Le, Wenwu, Li, Jinbin, Zhu, Qixin, Niu, Fuzhou, Chen, Hao, Sun, Fangyuan, Shen, Yehu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971584/ https://www.ncbi.nlm.nih.gov/pubmed/36864898 http://dx.doi.org/10.3389/fnbot.2023.1096083 |
Ejemplares similares
-
Multilevel Strip Pooling-Based Convolutional Neural Network for the Classification of Carotid Plaque Echogenicity
por: Ma, Wei, et al.
Publicado: (2021) -
ILCS: An Improved Lightweight Convolution Structure and Mixed Interactive Attention for Steel Surface Defect Classification
por: Pei, Yangjun, et al.
Publicado: (2022) -
Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification
por: Arafin, Palisa, et al.
Publicado: (2022) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Automatic Detection and Classification of Diabetic Retinopathy Using the Improved Pooling Function in the Convolution Neural Network
por: Bhimavarapu, Usharani, et al.
Publicado: (2023)