Cargando…
A cooperative deep learning model for fake news detection in online social networks
Fake news, which considers and modifies facts for virality objectives, causes a lot of havoc on social media. It spreads faster than real news and produces a slew of issues, including disinformation, misunderstanding, and misdirection in the minds of readers. To combat the spread of fake news, detec...
Autores principales: | Mallick, Chandrakant, Mishra, Sarojananda, Senapati, Manas Ranjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971668/ https://www.ncbi.nlm.nih.gov/pubmed/36992904 http://dx.doi.org/10.1007/s12652-023-04562-4 |
Ejemplares similares
-
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
A novel self-learning semi-supervised deep learning network to detect fake news on social media
por: Li, Xin, et al.
Publicado: (2021) -
Multilingual deep learning framework for fake news detection using capsule neural network
por: Mohawesh, Rami, et al.
Publicado: (2023) -
CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT
por: Palani, Balasubramanian, et al.
Publicado: (2021)