Cargando…
Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early detection is critical for preventing complications and optimizing treatment. In this study, a novel AF prediction method is proposed, which is based on investigating a subset of the 12-lead ECG data using a recurrent plot...
Autores principales: | Zhang, Hua, Liu, Chengyu, Tang, Fangfang, Li, Mingyan, Zhang, Dongxia, Xia, Ling, Crozier, Stuart, Gan, Hongping, Zhao, Nan, Xu, Wenlong, Liu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971936/ https://www.ncbi.nlm.nih.gov/pubmed/36866172 http://dx.doi.org/10.3389/fphys.2023.1070621 |
Ejemplares similares
-
Cardiac Arrhythmia classification based on 3D recurrence plot analysis and deep learning
por: Zhang, Hua, et al.
Publicado: (2022) -
Extended ECG Improves Classification of Paroxysmal and Persistent Atrial Fibrillation Based on P- and f-Waves
por: Zink, Matthias Daniel, et al.
Publicado: (2022) -
Regularization Techniques for ECG Imaging during Atrial Fibrillation: A Computational Study
por: Figuera, Carlos, et al.
Publicado: (2016) -
Premature Beats Rejection Strategy on Paroxysmal Atrial Fibrillation Detection
por: Zhang, Xiangyu, et al.
Publicado: (2022) -
Corrigendum: Regularization Techniques for ECG Imaging during Atrial Fibrillation: A Computational Study
por: Figuera, Carlos, et al.
Publicado: (2016)