Cargando…
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma
BACKGROUND: Osteosarcoma is well‐established as the most common bone cancer in children and adolescents. Patients with localized disease have different prognoses and management than those with metastasis at the time of diagnosis. The purpose of this study was to explore potential risk factors for me...
Autores principales: | Bai, Bing‐li, Wu, Zong‐yi, Weng, She‐ji, Yang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972029/ https://www.ncbi.nlm.nih.gov/pubmed/36082478 http://dx.doi.org/10.1002/cam4.5225 |
Ejemplares similares
-
Application of machine learning algorithm in predicting distant metastasis of T1 gastric cancer
por: Tian, HuaKai, et al.
Publicado: (2023) -
The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model
por: Zhao, Xuhai, et al.
Publicado: (2023) -
Application of Machine Learning Algorithms to Predict Lymph Node Metastasis in Early Gastric Cancer
por: Tian, HuaKai, et al.
Publicado: (2022) -
Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns
por: Cakiroglu, Celal, et al.
Publicado: (2022) -
Construction and validation of nomogram to predict distant metastasis in osteosarcoma: a retrospective study
por: Lu, Shouliang, et al.
Publicado: (2021)