Cargando…
An Integrated Approach of Learning Genetic Networks From Genome-Wide Gene Expression Data Using Gaussian Graphical Model and Monte Carlo Method
Global genetic networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single genes or local networks. The Gaussian graphical model (GGM) is widely applied to learn genetic networks because it defines an undirected graph decoding th...
Autores principales: | Zhao, Haitao, Datta, Sujay, Duan, Zhong-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972065/ https://www.ncbi.nlm.nih.gov/pubmed/36865982 http://dx.doi.org/10.1177/11779322231152972 |
Ejemplares similares
-
Cancer Genetic Network Inference Using Gaussian Graphical
Models
por: Zhao, Haitao, et al.
Publicado: (2019) -
MCPeSe: Monte Carlo penalty selection for graphical lasso
por: Kuismin, Markku, et al.
Publicado: (2020) -
Parallel Implementation
of Nonadditive Gaussian Process
Potentials for Monte Carlo Simulations
por: Broad, Jack, et al.
Publicado: (2023) -
Applying graphics processor units to Monte Carlo dose calculation in radiation therapy
por: Bakhtiari, M., et al.
Publicado: (2010) -
Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
por: Liang, Rubing, et al.
Publicado: (2022)