Cargando…
Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability
BACKGROUND: Solid tumors pose unique roadblocks to treatment with chimeric antigen receptor (CAR) T cells, including limited T-cell persistence, inefficient tumor infiltration, and an immunosuppressive tumor microenvironment. To date, attempts to overcome these roadblocks have been unsatisfactory. H...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972435/ https://www.ncbi.nlm.nih.gov/pubmed/36849200 http://dx.doi.org/10.1136/jitc-2022-006119 |
_version_ | 1784898323650445312 |
---|---|
author | Tang, Jianghui Sheng, Jianpeng Zhang, Qi Ji, Yongtao Wang, Xun Zhang, Junlei Wu, Jiangchao Song, Jinyuan Bai, Xueli Liang, Tingbo |
author_facet | Tang, Jianghui Sheng, Jianpeng Zhang, Qi Ji, Yongtao Wang, Xun Zhang, Junlei Wu, Jiangchao Song, Jinyuan Bai, Xueli Liang, Tingbo |
author_sort | Tang, Jianghui |
collection | PubMed |
description | BACKGROUND: Solid tumors pose unique roadblocks to treatment with chimeric antigen receptor (CAR) T cells, including limited T-cell persistence, inefficient tumor infiltration, and an immunosuppressive tumor microenvironment. To date, attempts to overcome these roadblocks have been unsatisfactory. Herein, we reported a strategy of combining Runx3 (encoding RUNX family transcription factor 3)-overexpression with ex vivo protein kinase B (AKT) inhibition to generate CAR-T cells with both central memory and tissue-resident memory characteristics to overcome these roadblocks. METHODS: We generated second-generation murine CAR-T cells expressing a CAR against human carbonic anhydrase 9 together with Runx3-overexpression and expanded them in the presence of AKTi-1/2, a selective and reversible inhibitor of AKT1/AKT2. We explored the influence of AKT inhibition (AKTi), Runx3-overexpression, and their combination on CAR-T cell phenotypes using flow cytometry, transcriptome profiling, and mass cytometry. The persistence, tumor-infiltration, and antitumor efficacy of CAR-T cells were evaluated in subcutaneous pancreatic ductal adenocarcinoma (PDAC) tumor models. RESULTS: AKTi generated a CD62L+central memory-like CAR-T cell population with enhanced persistence, but promotable cytotoxic potential. Runx3-overexpression cooperated with AKTi to generate CAR-T cells with both central memory and tissue-resident memory characteristics. Runx3-overexpression enhanced the potential of CD4+CAR T cells and cooperated with AKTi to inhibit the terminal differentiation of CD8+CAR T cells induced by tonic signaling. While AKTi promoted CAR-T cell central memory phenotype with prominently enhanced expansion ability, Runx3-overexpression promoted the CAR-T cell tissue-resident memory phenotype and further enhanced persistence, effector function, and tumor-residency. These novel AKTi-generated Runx3-overexpressing CAR-T cells exhibited robust antitumor activity and responded well to programmed cell death 1 blockade in subcutaneous PDAC tumor models. CONCLUSIONS: Runx3-overexpression cooperated with ex vivo AKTi to generate CAR-T cells with both tissue-resident and central memory characteristics, which equipped CAR-T cells with better persistence, cytotoxic potential, and tumor-residency ability to overcome roadblocks in the treatment of solid tumors. |
format | Online Article Text |
id | pubmed-9972435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-99724352023-03-01 Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability Tang, Jianghui Sheng, Jianpeng Zhang, Qi Ji, Yongtao Wang, Xun Zhang, Junlei Wu, Jiangchao Song, Jinyuan Bai, Xueli Liang, Tingbo J Immunother Cancer Immune Cell Therapies and Immune Cell Engineering BACKGROUND: Solid tumors pose unique roadblocks to treatment with chimeric antigen receptor (CAR) T cells, including limited T-cell persistence, inefficient tumor infiltration, and an immunosuppressive tumor microenvironment. To date, attempts to overcome these roadblocks have been unsatisfactory. Herein, we reported a strategy of combining Runx3 (encoding RUNX family transcription factor 3)-overexpression with ex vivo protein kinase B (AKT) inhibition to generate CAR-T cells with both central memory and tissue-resident memory characteristics to overcome these roadblocks. METHODS: We generated second-generation murine CAR-T cells expressing a CAR against human carbonic anhydrase 9 together with Runx3-overexpression and expanded them in the presence of AKTi-1/2, a selective and reversible inhibitor of AKT1/AKT2. We explored the influence of AKT inhibition (AKTi), Runx3-overexpression, and their combination on CAR-T cell phenotypes using flow cytometry, transcriptome profiling, and mass cytometry. The persistence, tumor-infiltration, and antitumor efficacy of CAR-T cells were evaluated in subcutaneous pancreatic ductal adenocarcinoma (PDAC) tumor models. RESULTS: AKTi generated a CD62L+central memory-like CAR-T cell population with enhanced persistence, but promotable cytotoxic potential. Runx3-overexpression cooperated with AKTi to generate CAR-T cells with both central memory and tissue-resident memory characteristics. Runx3-overexpression enhanced the potential of CD4+CAR T cells and cooperated with AKTi to inhibit the terminal differentiation of CD8+CAR T cells induced by tonic signaling. While AKTi promoted CAR-T cell central memory phenotype with prominently enhanced expansion ability, Runx3-overexpression promoted the CAR-T cell tissue-resident memory phenotype and further enhanced persistence, effector function, and tumor-residency. These novel AKTi-generated Runx3-overexpressing CAR-T cells exhibited robust antitumor activity and responded well to programmed cell death 1 blockade in subcutaneous PDAC tumor models. CONCLUSIONS: Runx3-overexpression cooperated with ex vivo AKTi to generate CAR-T cells with both tissue-resident and central memory characteristics, which equipped CAR-T cells with better persistence, cytotoxic potential, and tumor-residency ability to overcome roadblocks in the treatment of solid tumors. BMJ Publishing Group 2023-02-27 /pmc/articles/PMC9972435/ /pubmed/36849200 http://dx.doi.org/10.1136/jitc-2022-006119 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Immune Cell Therapies and Immune Cell Engineering Tang, Jianghui Sheng, Jianpeng Zhang, Qi Ji, Yongtao Wang, Xun Zhang, Junlei Wu, Jiangchao Song, Jinyuan Bai, Xueli Liang, Tingbo Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title | Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title_full | Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title_fullStr | Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title_full_unstemmed | Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title_short | Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability |
title_sort | runx3-overexpression cooperates with ex vivo akt inhibition to generate receptor-engineered t cells with better persistence, tumor-residency, and antitumor ability |
topic | Immune Cell Therapies and Immune Cell Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972435/ https://www.ncbi.nlm.nih.gov/pubmed/36849200 http://dx.doi.org/10.1136/jitc-2022-006119 |
work_keys_str_mv | AT tangjianghui runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT shengjianpeng runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT zhangqi runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT jiyongtao runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT wangxun runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT zhangjunlei runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT wujiangchao runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT songjinyuan runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT baixueli runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability AT liangtingbo runx3overexpressioncooperateswithexvivoaktinhibitiontogeneratereceptorengineeredtcellswithbetterpersistencetumorresidencyandantitumorability |