Cargando…
NaroNet: Discovery of tumor microenvironment elements from highly multiplexed images
Understanding the spatial interactions between the elements of the tumor microenvironment -i.e. tumor cells. fibroblasts, immune cells- and how these interactions relate to the diagnosis or prognosis of a tumor is one of the goals of computational pathology. We present NaroNet, a deep learning frame...
Autores principales: | Jiménez-Sánchez, Daniel, Ariz, Mikel, Chang, Hang, Matias-Guiu, Xavier, de Andrea, Carlos E., Ortiz-de-Solórzano, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972483/ https://www.ncbi.nlm.nih.gov/pubmed/35217454 http://dx.doi.org/10.1016/j.media.2022.102384 |
Ejemplares similares
-
Proceedings of the NArO Advanced Study Institute on Electrified Interfaces in Physics, Chemistry and Biology
por: Guidelli, R
Publicado: (1992) -
Weakly supervised deep learning to predict recurrence in low-grade endometrial cancer from multiplexed immunofluorescence images
por: Jiménez-Sánchez, Daniel, et al.
Publicado: (2023) -
Whole-Genome Sequencing of the NARO World Rice Core Collection (WRC) as the Basis for Diversity and Association Studies
por: Tanaka, N, et al.
Publicado: (2020) -
Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype
por: Rodríguez-Arce, Irene, et al.
Publicado: (2021) -
The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion
por: Anguiano, María, et al.
Publicado: (2020)