Cargando…
Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene exp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972525/ https://www.ncbi.nlm.nih.gov/pubmed/36865673 http://dx.doi.org/10.1093/braincomms/fcad007 |
_version_ | 1784898343459094528 |
---|---|
author | Dionisi, Chiara Chazalon, Marine Rai, Myriam Keime, Céline Imbault, Virginie Communi, David Puccio, Hélène Schiffmann, Serge N Pandolfo, Massimo |
author_facet | Dionisi, Chiara Chazalon, Marine Rai, Myriam Keime, Céline Imbault, Virginie Communi, David Puccio, Hélène Schiffmann, Serge N Pandolfo, Massimo |
author_sort | Dionisi, Chiara |
collection | PubMed |
description | Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia. |
format | Online Article Text |
id | pubmed-9972525 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99725252023-03-01 Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties Dionisi, Chiara Chazalon, Marine Rai, Myriam Keime, Céline Imbault, Virginie Communi, David Puccio, Hélène Schiffmann, Serge N Pandolfo, Massimo Brain Commun Original Article Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia. Oxford University Press 2023-01-18 /pmc/articles/PMC9972525/ /pubmed/36865673 http://dx.doi.org/10.1093/braincomms/fcad007 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Dionisi, Chiara Chazalon, Marine Rai, Myriam Keime, Céline Imbault, Virginie Communi, David Puccio, Hélène Schiffmann, Serge N Pandolfo, Massimo Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title | Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title_full | Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title_fullStr | Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title_full_unstemmed | Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title_short | Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
title_sort | proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972525/ https://www.ncbi.nlm.nih.gov/pubmed/36865673 http://dx.doi.org/10.1093/braincomms/fcad007 |
work_keys_str_mv | AT dionisichiara proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT chazalonmarine proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT raimyriam proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT keimeceline proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT imbaultvirginie proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT communidavid proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT pucciohelene proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT schiffmannsergen proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties AT pandolfomassimo proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties |