Cargando…

Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties

Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Dionisi, Chiara, Chazalon, Marine, Rai, Myriam, Keime, Céline, Imbault, Virginie, Communi, David, Puccio, Hélène, Schiffmann, Serge N, Pandolfo, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972525/
https://www.ncbi.nlm.nih.gov/pubmed/36865673
http://dx.doi.org/10.1093/braincomms/fcad007
_version_ 1784898343459094528
author Dionisi, Chiara
Chazalon, Marine
Rai, Myriam
Keime, Céline
Imbault, Virginie
Communi, David
Puccio, Hélène
Schiffmann, Serge N
Pandolfo, Massimo
author_facet Dionisi, Chiara
Chazalon, Marine
Rai, Myriam
Keime, Céline
Imbault, Virginie
Communi, David
Puccio, Hélène
Schiffmann, Serge N
Pandolfo, Massimo
author_sort Dionisi, Chiara
collection PubMed
description Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.
format Online
Article
Text
id pubmed-9972525
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99725252023-03-01 Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties Dionisi, Chiara Chazalon, Marine Rai, Myriam Keime, Céline Imbault, Virginie Communi, David Puccio, Hélène Schiffmann, Serge N Pandolfo, Massimo Brain Commun Original Article Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia. Oxford University Press 2023-01-18 /pmc/articles/PMC9972525/ /pubmed/36865673 http://dx.doi.org/10.1093/braincomms/fcad007 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Dionisi, Chiara
Chazalon, Marine
Rai, Myriam
Keime, Céline
Imbault, Virginie
Communi, David
Puccio, Hélène
Schiffmann, Serge N
Pandolfo, Massimo
Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title_full Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title_fullStr Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title_full_unstemmed Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title_short Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
title_sort proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972525/
https://www.ncbi.nlm.nih.gov/pubmed/36865673
http://dx.doi.org/10.1093/braincomms/fcad007
work_keys_str_mv AT dionisichiara proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT chazalonmarine proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT raimyriam proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT keimeceline proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT imbaultvirginie proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT communidavid proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT pucciohelene proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT schiffmannsergen proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties
AT pandolfomassimo proprioceptorsenrichedneuronalculturesfrominducedpluripotentstemcellsfromfriedreichataxiapatientsshowalteredtranscriptomicandproteomicprofilesabnormalneuriteextensionandimpairedelectrophysiologicalproperties