Cargando…
A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery
BACKGROUND: The placenta, as a unique exchange organ between mother and fetus, is essential for successful human pregnancy and fetal health. Preeclampsia (PE) caused by placental dysfunction contributes to both maternal and infant morbidity and mortality. Accurate identification of PE patients plays...
Autores principales: | Wang, Hao, Zhang, Zhaoyue, Li, Haicheng, Li, Jinzhao, Li, Hanshuang, Liu, Mingzhu, Liang, Pengfei, Xi, Qilemuge, Xing, Yongqiang, Yang, Lei, Zuo, Yongchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972636/ https://www.ncbi.nlm.nih.gov/pubmed/36849879 http://dx.doi.org/10.1186/s13578-023-00991-y |
Ejemplares similares
-
EmAtlas: a comprehensive atlas for exploring spatiotemporal activation in mammalian embryogenesis
por: Zheng, Lei, et al.
Publicado: (2022) -
Deciphering the decisive factors driving fate bifurcations in somatic cell reprogramming
por: Long, Chunshen, et al.
Publicado: (2023) -
Machine Learning of Single-Cell Transcriptome Highly Identifies mRNA Signature by Comparing F-Score Selection with DGE Analysis
por: Liang, Pengfei, et al.
Publicado: (2020) -
A Comparative Analysis of Single-Cell Transcriptome Identifies Reprogramming Driver Factors for Efficiency Improvement
por: Li, Hanshuang, et al.
Publicado: (2020) -
ANPrAod: Identify Antioxidant Proteins by Fusing Amino Acid Clustering Strategy and N-Peptide Combination
por: Xi, Qilemuge, et al.
Publicado: (2021)