Cargando…

Population Genomics Provide Insights into the Global Genetic Structure of Colletotrichum graminicola, the Causal Agent of Maize Anthracnose

Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencin...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogério, Flávia, Baroncelli, Riccardo, Cuevas-Fernández, Francisco Borja, Becerra, Sioly, Crouch, JoAnne, Bettiol, Wagner, Azcárate-Peril, M. Andrea, Malapi-Wight, Martha, Ortega, Veronique, Betran, Javier, Tenuta, Albert, Dambolena, José S., Esker, Paul D., Revilla, Pedro, Jackson-Ziems, Tamra A., Hiltbrunner, Jürg, Munkvold, Gary, Buhiniček, Ivica, Vicente-Villardón, José L., Sukno, Serenella A., Thon, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973043/
https://www.ncbi.nlm.nih.gov/pubmed/36533926
http://dx.doi.org/10.1128/mbio.02878-22
Descripción
Sumario:Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure.