Cargando…
Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression
GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The g...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973162/ https://www.ncbi.nlm.nih.gov/pubmed/36860432 http://dx.doi.org/10.1155/2022/4330251 |
_version_ | 1784898463330205696 |
---|---|
author | Yang, Guokun Liang, Xiaomin Jiang, Yanle Li, Chengquan Zhang, Yanmin Zhang, Xindang Chang, Xulu Shen, Yawei Meng, Xiaolin |
author_facet | Yang, Guokun Liang, Xiaomin Jiang, Yanle Li, Chengquan Zhang, Yanmin Zhang, Xindang Chang, Xulu Shen, Yawei Meng, Xiaolin |
author_sort | Yang, Guokun |
collection | PubMed |
description | GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost. |
format | Online Article Text |
id | pubmed-9973162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-99731622023-02-28 Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression Yang, Guokun Liang, Xiaomin Jiang, Yanle Li, Chengquan Zhang, Yanmin Zhang, Xindang Chang, Xulu Shen, Yawei Meng, Xiaolin Aquac Nutr Research Article GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost. Hindawi 2022-11-07 /pmc/articles/PMC9973162/ /pubmed/36860432 http://dx.doi.org/10.1155/2022/4330251 Text en Copyright © 2022 Guokun Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Guokun Liang, Xiaomin Jiang, Yanle Li, Chengquan Zhang, Yanmin Zhang, Xindang Chang, Xulu Shen, Yawei Meng, Xiaolin Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title | Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title_full | Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title_fullStr | Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title_full_unstemmed | Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title_short | Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression |
title_sort | molecular characterization of grass carp gipr and effect of nutrition states, insulin, and glucagon on its expression |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973162/ https://www.ncbi.nlm.nih.gov/pubmed/36860432 http://dx.doi.org/10.1155/2022/4330251 |
work_keys_str_mv | AT yangguokun molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT liangxiaomin molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT jiangyanle molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT lichengquan molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT zhangyanmin molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT zhangxindang molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT changxulu molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT shenyawei molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression AT mengxiaolin molecularcharacterizationofgrasscarpgiprandeffectofnutritionstatesinsulinandglucagononitsexpression |