Cargando…
Growth Arrest of Staphylococcus aureus Induces Daptomycin Tolerance via Cell Wall Remodelling
Almost all bactericidal drugs require bacterial replication and/or metabolic activity for their killing activity. When these processes are inhibited by bacteriostatic antibiotics, bacterial killing is significantly reduced. One notable exception is the lipopeptide antibiotic daptomycin, which has be...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973334/ https://www.ncbi.nlm.nih.gov/pubmed/36722949 http://dx.doi.org/10.1128/mbio.03558-22 |
Sumario: | Almost all bactericidal drugs require bacterial replication and/or metabolic activity for their killing activity. When these processes are inhibited by bacteriostatic antibiotics, bacterial killing is significantly reduced. One notable exception is the lipopeptide antibiotic daptomycin, which has been reported to efficiently kill growth-arrested bacteria. However, these studies employed only short periods of growth arrest (<1 h), which may not fully represent the duration of growth arrest that can occur in vivo. We found that a growth inhibitory concentration of the protein synthesis inhibitor tetracycline led to a time-dependent induction of daptomycin tolerance in S. aureus, with an approximately 100,000-fold increase in survival after 16 h of growth arrest, relative to exponential-phase bacteria. Daptomycin tolerance required glucose and was associated with increased production of the cell wall polymers peptidoglycan and wall-teichoic acids. However, while the accumulation of peptidoglycan was required for daptomycin tolerance, only a low abundance of wall teichoic acid was necessary. Therefore, whereas tolerance to most antibiotics occurs passively due to a lack of metabolic activity and/or replication, daptomycin tolerance arises via active cell wall remodelling. |
---|