Cargando…

Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning

Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We use...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckardt, Jan-Niklas, Röllig, Christoph, Metzeler, Klaus, Kramer, Michael, Stasik, Sebastian, Georgi, Julia-Annabell, Heisig, Peter, Spiekermann, Karsten, Krug, Utz, Braess, Jan, Görlich, Dennis, Sauerland, Cristina M., Woermann, Bernhard, Herold, Tobias, Berdel, Wolfgang E., Hiddemann, Wolfgang, Kroschinsky, Frank, Schetelig, Johannes, Platzbecker, Uwe, Müller-Tidow, Carsten, Sauer, Tim, Serve, Hubert, Baldus, Claudia, Schäfer-Eckart, Kerstin, Kaufmann, Martin, Krause, Stefan, Hänel, Mathias, Schliemann, Christoph, Hanoun, Maher, Thiede, Christian, Bornhäuser, Martin, Wendt, Karsten, Middeke, Jan Moritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Fondazione Ferrata Storti 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973482/
https://www.ncbi.nlm.nih.gov/pubmed/35708137
http://dx.doi.org/10.3324/haematol.2021.280027
_version_ 1784898534326140928
author Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Kramer, Michael
Stasik, Sebastian
Georgi, Julia-Annabell
Heisig, Peter
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina M.
Woermann, Bernhard
Herold, Tobias
Berdel, Wolfgang E.
Hiddemann, Wolfgang
Kroschinsky, Frank
Schetelig, Johannes
Platzbecker, Uwe
Müller-Tidow, Carsten
Sauer, Tim
Serve, Hubert
Baldus, Claudia
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan
Hänel, Mathias
Schliemann, Christoph
Hanoun, Maher
Thiede, Christian
Bornhäuser, Martin
Wendt, Karsten
Middeke, Jan Moritz
author_facet Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Kramer, Michael
Stasik, Sebastian
Georgi, Julia-Annabell
Heisig, Peter
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina M.
Woermann, Bernhard
Herold, Tobias
Berdel, Wolfgang E.
Hiddemann, Wolfgang
Kroschinsky, Frank
Schetelig, Johannes
Platzbecker, Uwe
Müller-Tidow, Carsten
Sauer, Tim
Serve, Hubert
Baldus, Claudia
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan
Hänel, Mathias
Schliemann, Christoph
Hanoun, Maher
Thiede, Christian
Bornhäuser, Martin
Wendt, Karsten
Middeke, Jan Moritz
author_sort Eckardt, Jan-Niklas
collection PubMed
description Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77–0.86 and between 0.63–0.74, respectively in our test set, and between 0.71–0.80 and 0.65–0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
format Online
Article
Text
id pubmed-9973482
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Fondazione Ferrata Storti
record_format MEDLINE/PubMed
spelling pubmed-99734822023-03-01 Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning Eckardt, Jan-Niklas Röllig, Christoph Metzeler, Klaus Kramer, Michael Stasik, Sebastian Georgi, Julia-Annabell Heisig, Peter Spiekermann, Karsten Krug, Utz Braess, Jan Görlich, Dennis Sauerland, Cristina M. Woermann, Bernhard Herold, Tobias Berdel, Wolfgang E. Hiddemann, Wolfgang Kroschinsky, Frank Schetelig, Johannes Platzbecker, Uwe Müller-Tidow, Carsten Sauer, Tim Serve, Hubert Baldus, Claudia Schäfer-Eckart, Kerstin Kaufmann, Martin Krause, Stefan Hänel, Mathias Schliemann, Christoph Hanoun, Maher Thiede, Christian Bornhäuser, Martin Wendt, Karsten Middeke, Jan Moritz Haematologica Article - Acute Myeloid Leukemia Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77–0.86 and between 0.63–0.74, respectively in our test set, and between 0.71–0.80 and 0.65–0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology. Fondazione Ferrata Storti 2022-06-16 /pmc/articles/PMC9973482/ /pubmed/35708137 http://dx.doi.org/10.3324/haematol.2021.280027 Text en Copyright© 2023 Ferrata Storti Foundation https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Article - Acute Myeloid Leukemia
Eckardt, Jan-Niklas
Röllig, Christoph
Metzeler, Klaus
Kramer, Michael
Stasik, Sebastian
Georgi, Julia-Annabell
Heisig, Peter
Spiekermann, Karsten
Krug, Utz
Braess, Jan
Görlich, Dennis
Sauerland, Cristina M.
Woermann, Bernhard
Herold, Tobias
Berdel, Wolfgang E.
Hiddemann, Wolfgang
Kroschinsky, Frank
Schetelig, Johannes
Platzbecker, Uwe
Müller-Tidow, Carsten
Sauer, Tim
Serve, Hubert
Baldus, Claudia
Schäfer-Eckart, Kerstin
Kaufmann, Martin
Krause, Stefan
Hänel, Mathias
Schliemann, Christoph
Hanoun, Maher
Thiede, Christian
Bornhäuser, Martin
Wendt, Karsten
Middeke, Jan Moritz
Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title_full Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title_fullStr Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title_full_unstemmed Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title_short Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
title_sort prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning
topic Article - Acute Myeloid Leukemia
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973482/
https://www.ncbi.nlm.nih.gov/pubmed/35708137
http://dx.doi.org/10.3324/haematol.2021.280027
work_keys_str_mv AT eckardtjanniklas predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT rolligchristoph predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT metzelerklaus predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT kramermichael predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT stasiksebastian predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT georgijuliaannabell predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT heisigpeter predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT spiekermannkarsten predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT krugutz predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT braessjan predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT gorlichdennis predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT sauerlandcristinam predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT woermannbernhard predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT heroldtobias predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT berdelwolfgange predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT hiddemannwolfgang predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT kroschinskyfrank predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT scheteligjohannes predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT platzbeckeruwe predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT mullertidowcarsten predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT sauertim predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT servehubert predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT baldusclaudia predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT schafereckartkerstin predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT kaufmannmartin predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT krausestefan predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT hanelmathias predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT schliemannchristoph predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT hanounmaher predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT thiedechristian predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT bornhausermartin predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT wendtkarsten predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning
AT middekejanmoritz predictionofcompleteremissionandsurvivalinacutemyeloidleukemiausingsupervisedmachinelearning