Cargando…
SIFT-GVF-based lung edge correction method for correcting the lung region in CT images
Juxtapleural nodules were excluded from the segmented lung region in the Hounsfield unit threshold-based segmentation method. To re-include those regions in the lung region, a new approach was presented using scale-invariant feature transform and gradient vector flow models in this study. First, the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974113/ https://www.ncbi.nlm.nih.gov/pubmed/36854040 http://dx.doi.org/10.1371/journal.pone.0282107 |
_version_ | 1784898667080056832 |
---|---|
author | Li, Xin Feng, Bin Qiao, Sai Wei, Haiyan Feng, Changli |
author_facet | Li, Xin Feng, Bin Qiao, Sai Wei, Haiyan Feng, Changli |
author_sort | Li, Xin |
collection | PubMed |
description | Juxtapleural nodules were excluded from the segmented lung region in the Hounsfield unit threshold-based segmentation method. To re-include those regions in the lung region, a new approach was presented using scale-invariant feature transform and gradient vector flow models in this study. First, the scale-invariant feature transform method was utilized to detect all scale-invariant points in the binary lung region. The boundary points in the neighborhood of a scale-invariant point were collected to form the supportive boundary lines. Then, we utilized a Fourier descriptor to obtain a character representation of each supportive boundary line. Spectrum energy recognizes supportive boundaries that must be corrected. Third, the gradient vector flow-snake method was presented to correct the recognized supportive borders with a smooth profile curve, giving an ideal correction edge in those regions. Finally, the performance of the proposed method was evaluated through experiments on multiple authentic computed tomography images. The perfect results and robustness proved that the proposed method could correct the juxtapleural region precisely. |
format | Online Article Text |
id | pubmed-9974113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99741132023-03-01 SIFT-GVF-based lung edge correction method for correcting the lung region in CT images Li, Xin Feng, Bin Qiao, Sai Wei, Haiyan Feng, Changli PLoS One Research Article Juxtapleural nodules were excluded from the segmented lung region in the Hounsfield unit threshold-based segmentation method. To re-include those regions in the lung region, a new approach was presented using scale-invariant feature transform and gradient vector flow models in this study. First, the scale-invariant feature transform method was utilized to detect all scale-invariant points in the binary lung region. The boundary points in the neighborhood of a scale-invariant point were collected to form the supportive boundary lines. Then, we utilized a Fourier descriptor to obtain a character representation of each supportive boundary line. Spectrum energy recognizes supportive boundaries that must be corrected. Third, the gradient vector flow-snake method was presented to correct the recognized supportive borders with a smooth profile curve, giving an ideal correction edge in those regions. Finally, the performance of the proposed method was evaluated through experiments on multiple authentic computed tomography images. The perfect results and robustness proved that the proposed method could correct the juxtapleural region precisely. Public Library of Science 2023-02-28 /pmc/articles/PMC9974113/ /pubmed/36854040 http://dx.doi.org/10.1371/journal.pone.0282107 Text en © 2023 Li et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Li, Xin Feng, Bin Qiao, Sai Wei, Haiyan Feng, Changli SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title | SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title_full | SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title_fullStr | SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title_full_unstemmed | SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title_short | SIFT-GVF-based lung edge correction method for correcting the lung region in CT images |
title_sort | sift-gvf-based lung edge correction method for correcting the lung region in ct images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974113/ https://www.ncbi.nlm.nih.gov/pubmed/36854040 http://dx.doi.org/10.1371/journal.pone.0282107 |
work_keys_str_mv | AT lixin siftgvfbasedlungedgecorrectionmethodforcorrectingthelungregioninctimages AT fengbin siftgvfbasedlungedgecorrectionmethodforcorrectingthelungregioninctimages AT qiaosai siftgvfbasedlungedgecorrectionmethodforcorrectingthelungregioninctimages AT weihaiyan siftgvfbasedlungedgecorrectionmethodforcorrectingthelungregioninctimages AT fengchangli siftgvfbasedlungedgecorrectionmethodforcorrectingthelungregioninctimages |