Cargando…

The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers

Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of...

Descripción completa

Detalles Bibliográficos
Autores principales: Clark, Andy T., Marchfield, David, Cao, Zheng, Dang, Tong, Tang, Nan, Gilbert, Dustin, Corbin, Elise A., Buchanan, Kristen S., Cheng, Xuemei M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974180/
https://www.ncbi.nlm.nih.gov/pubmed/36861033
http://dx.doi.org/10.1063/5.0086761
Descripción
Sumario:Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of MREs using a combination of magnetometry measurements and computational modeling. Poly-dimethylsiloxane-based MREs with Young’s moduli that range over two orders of magnitude were synthesized using commercial polymers Sylgard(™) 527, Sylgard 184, and carbonyl iron powder. The magnetic hysteresis loops of the softer MREs exhibit a characteristic pinched loop shape with almost zero remanence and loop widening at intermediate fields that monotonically decreases with increasing polymer stiffness. A simple two-dipole model that incorporates magneto-mechanical coupling not only confirms that micrometer-scale particle motion along the applied magnetic field direction plays a defining role in the magnetic hysteresis of ultrasoft MREs but also reproduces the observed loop shapes and widening trends for MREs with varying polymer stiffnesses.