Cargando…

Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress

OBJECTIVE: Naringin is a flavonoid derived from Chinese herbs. According to earlier studies, naringin may have the potential to alleviate aging-induced cognitive dysfunction. Therefore, this study attempted to explore the protective effect and underlying mechanism of naringin on aging rats with cogn...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Xiao-jie, Jia, Yi, Cao, Rui, Zhou, Mei-ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974290/
https://www.ncbi.nlm.nih.gov/pubmed/36865741
http://dx.doi.org/10.1155/2023/2919811
_version_ 1784898697586278400
author Dai, Xiao-jie
Jia, Yi
Cao, Rui
Zhou, Mei-ning
author_facet Dai, Xiao-jie
Jia, Yi
Cao, Rui
Zhou, Mei-ning
author_sort Dai, Xiao-jie
collection PubMed
description OBJECTIVE: Naringin is a flavonoid derived from Chinese herbs. According to earlier studies, naringin may have the potential to alleviate aging-induced cognitive dysfunction. Therefore, this study attempted to explore the protective effect and underlying mechanism of naringin on aging rats with cognitive dysfunction. METHODS: After the construction of a model of aging rats with cognitive dysfunction through subcutaneous injection of D-galactose (D-gal; 150 mg/kg), intragastric administration of naringin (100 mg/kg) was performed for treatment. Behavioral tests, including Morris water maze test (MWM), novel object recognition test (NORT), and fear conditioning test, were used to measure the cognitive function; ELISA and biochemical tests were used to determine the levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the hippocampus of rats in each group, respectively; H&E staining was used to observe the pathological changes in the hippocampus; Western blot was used to examine the expression of toll-like receptor 4 (TLR4)/NF-κB pathway-related proteins and endoplasmic reticulum (ER) stress-related proteins in the hippocampus. RESULTS: The model was successfully constructed by subcutaneous injection of D-gal (150 mg/kg). The behavioral test results showed that naringin could ameliorate the cognitive dysfunction and alleviate the histopathological damage of hippocampus. Moreover, naringin significantly improve the inflammatory response (the levels of IL-1β, IL-6, and MCP-1 were decreased), oxidative stress response (MDA level was increased while GSH-Px activity was decreased), and ER stress (the expression of glucose-regulated protein 78 (GRP78), C/-EBP homologous protein (CHOP), and transcription factor 6 (ATF6) expression was downregulated), and increased the levels of neurotrophic factors BDNF and NGF in D-gal rats. Besides, further mechanistic studies revealed the downregulation of naringin on TLR4/NF-κB pathway activity. CONCLUSION: Naringin may inhibit inflammatory response, oxidative stress, and ER stress by downregulating TLR4/NF-κB pathway activity, thereby improving cognitive dysfunction and alleviating histopathological damage of hippocampus in aging rats. Briefly, naringin is an effective drug for the treatment of cognitive dysfunction.
format Online
Article
Text
id pubmed-9974290
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-99742902023-03-01 Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress Dai, Xiao-jie Jia, Yi Cao, Rui Zhou, Mei-ning Evid Based Complement Alternat Med Research Article OBJECTIVE: Naringin is a flavonoid derived from Chinese herbs. According to earlier studies, naringin may have the potential to alleviate aging-induced cognitive dysfunction. Therefore, this study attempted to explore the protective effect and underlying mechanism of naringin on aging rats with cognitive dysfunction. METHODS: After the construction of a model of aging rats with cognitive dysfunction through subcutaneous injection of D-galactose (D-gal; 150 mg/kg), intragastric administration of naringin (100 mg/kg) was performed for treatment. Behavioral tests, including Morris water maze test (MWM), novel object recognition test (NORT), and fear conditioning test, were used to measure the cognitive function; ELISA and biochemical tests were used to determine the levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the hippocampus of rats in each group, respectively; H&E staining was used to observe the pathological changes in the hippocampus; Western blot was used to examine the expression of toll-like receptor 4 (TLR4)/NF-κB pathway-related proteins and endoplasmic reticulum (ER) stress-related proteins in the hippocampus. RESULTS: The model was successfully constructed by subcutaneous injection of D-gal (150 mg/kg). The behavioral test results showed that naringin could ameliorate the cognitive dysfunction and alleviate the histopathological damage of hippocampus. Moreover, naringin significantly improve the inflammatory response (the levels of IL-1β, IL-6, and MCP-1 were decreased), oxidative stress response (MDA level was increased while GSH-Px activity was decreased), and ER stress (the expression of glucose-regulated protein 78 (GRP78), C/-EBP homologous protein (CHOP), and transcription factor 6 (ATF6) expression was downregulated), and increased the levels of neurotrophic factors BDNF and NGF in D-gal rats. Besides, further mechanistic studies revealed the downregulation of naringin on TLR4/NF-κB pathway activity. CONCLUSION: Naringin may inhibit inflammatory response, oxidative stress, and ER stress by downregulating TLR4/NF-κB pathway activity, thereby improving cognitive dysfunction and alleviating histopathological damage of hippocampus in aging rats. Briefly, naringin is an effective drug for the treatment of cognitive dysfunction. Hindawi 2023-02-21 /pmc/articles/PMC9974290/ /pubmed/36865741 http://dx.doi.org/10.1155/2023/2919811 Text en Copyright © 2023 Xiao-jie Dai et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dai, Xiao-jie
Jia, Yi
Cao, Rui
Zhou, Mei-ning
Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title_full Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title_fullStr Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title_full_unstemmed Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title_short Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF-κB Pathway and Endoplasmic Reticulum Stress
title_sort naringin prevents cognitive dysfunction in aging rats by inhibiting toll-like receptor 4 (tlr4)/nf-κb pathway and endoplasmic reticulum stress
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974290/
https://www.ncbi.nlm.nih.gov/pubmed/36865741
http://dx.doi.org/10.1155/2023/2919811
work_keys_str_mv AT daixiaojie naringinpreventscognitivedysfunctioninagingratsbyinhibitingtolllikereceptor4tlr4nfkbpathwayandendoplasmicreticulumstress
AT jiayi naringinpreventscognitivedysfunctioninagingratsbyinhibitingtolllikereceptor4tlr4nfkbpathwayandendoplasmicreticulumstress
AT caorui naringinpreventscognitivedysfunctioninagingratsbyinhibitingtolllikereceptor4tlr4nfkbpathwayandendoplasmicreticulumstress
AT zhoumeining naringinpreventscognitivedysfunctioninagingratsbyinhibitingtolllikereceptor4tlr4nfkbpathwayandendoplasmicreticulumstress