Cargando…

Parameter inference in a computational model of haemodynamics in pulmonary hypertension

Pulmonary hypertension (PH), defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg, is characterized by increased pulmonary vascular resistance and decreased pulmonary arterial compliance. There are few measurable biomarkers of PH progression, but a conclusive diagnosis of the di...

Descripción completa

Detalles Bibliográficos
Autores principales: Colunga, Amanda L., Colebank, Mitchel J., Olufsen, Mette S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974303/
https://www.ncbi.nlm.nih.gov/pubmed/36854380
http://dx.doi.org/10.1098/rsif.2022.0735
_version_ 1784898700563185664
author Colunga, Amanda L.
Colebank, Mitchel J.
Olufsen, Mette S.
author_facet Colunga, Amanda L.
Colebank, Mitchel J.
Olufsen, Mette S.
author_sort Colunga, Amanda L.
collection PubMed
description Pulmonary hypertension (PH), defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg, is characterized by increased pulmonary vascular resistance and decreased pulmonary arterial compliance. There are few measurable biomarkers of PH progression, but a conclusive diagnosis of the disease requires invasive right heart catheterization (RHC). Patient-specific cardiovascular systems-level computational models provide a potential non-invasive tool for determining additional indicators of disease severity. Using computational modelling, this study quantifies physiological parameters indicative of disease severity in nine PH patients. The model includes all four heart chambers, the pulmonary and systemic circulations. We consider two sets of calibration data: static (systolic and diastolic values) RHC data and a combination of static and continuous, time-series waveform data. We determine a subset of identifiable parameters for model calibration using sensitivity analyses and multi-start inference and perform posterior uncertainty quantification. Results show that additional waveform data enables accurate calibration of the right atrial reservoir and pump function across the PH cohort. Model outcomes, including stroke work and pulmonary resistance-compliance relations, reflect typical right heart dynamics in PH phenotypes. Lastly, we show that estimated parameters agree with previous, non-modelling studies, supporting this type of analysis in translational PH research.
format Online
Article
Text
id pubmed-9974303
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-99743032023-03-01 Parameter inference in a computational model of haemodynamics in pulmonary hypertension Colunga, Amanda L. Colebank, Mitchel J. Olufsen, Mette S. J R Soc Interface Life Sciences–Mathematics interface Pulmonary hypertension (PH), defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg, is characterized by increased pulmonary vascular resistance and decreased pulmonary arterial compliance. There are few measurable biomarkers of PH progression, but a conclusive diagnosis of the disease requires invasive right heart catheterization (RHC). Patient-specific cardiovascular systems-level computational models provide a potential non-invasive tool for determining additional indicators of disease severity. Using computational modelling, this study quantifies physiological parameters indicative of disease severity in nine PH patients. The model includes all four heart chambers, the pulmonary and systemic circulations. We consider two sets of calibration data: static (systolic and diastolic values) RHC data and a combination of static and continuous, time-series waveform data. We determine a subset of identifiable parameters for model calibration using sensitivity analyses and multi-start inference and perform posterior uncertainty quantification. Results show that additional waveform data enables accurate calibration of the right atrial reservoir and pump function across the PH cohort. Model outcomes, including stroke work and pulmonary resistance-compliance relations, reflect typical right heart dynamics in PH phenotypes. Lastly, we show that estimated parameters agree with previous, non-modelling studies, supporting this type of analysis in translational PH research. The Royal Society 2023-03-01 /pmc/articles/PMC9974303/ /pubmed/36854380 http://dx.doi.org/10.1098/rsif.2022.0735 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Life Sciences–Mathematics interface
Colunga, Amanda L.
Colebank, Mitchel J.
Olufsen, Mette S.
Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title_full Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title_fullStr Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title_full_unstemmed Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title_short Parameter inference in a computational model of haemodynamics in pulmonary hypertension
title_sort parameter inference in a computational model of haemodynamics in pulmonary hypertension
topic Life Sciences–Mathematics interface
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974303/
https://www.ncbi.nlm.nih.gov/pubmed/36854380
http://dx.doi.org/10.1098/rsif.2022.0735
work_keys_str_mv AT colungaamandal parameterinferenceinacomputationalmodelofhaemodynamicsinpulmonaryhypertension
AT colebankmitchelj parameterinferenceinacomputationalmodelofhaemodynamicsinpulmonaryhypertension
AT parameterinferenceinacomputationalmodelofhaemodynamicsinpulmonaryhypertension
AT olufsenmettes parameterinferenceinacomputationalmodelofhaemodynamicsinpulmonaryhypertension