Cargando…
Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells
The Rho GTPase family proteins are key regulators of cytoskeletal dynamics. Deregulated activity of Rho GTPases is associated with cancers and neurodegenerative diseases, and their potential as drug targets has long been recognized. Using an economically effective drug screening workflow in fission...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974304/ https://www.ncbi.nlm.nih.gov/pubmed/36854376 http://dx.doi.org/10.1098/rsob.220185 |
_version_ | 1784898700799115264 |
---|---|
author | Morishita, Jun Nurse, Paul |
author_facet | Morishita, Jun Nurse, Paul |
author_sort | Morishita, Jun |
collection | PubMed |
description | The Rho GTPase family proteins are key regulators of cytoskeletal dynamics. Deregulated activity of Rho GTPases is associated with cancers and neurodegenerative diseases, and their potential as drug targets has long been recognized. Using an economically effective drug screening workflow in fission yeast and human cells, we have identified a Rho GTPase inhibitor, O1. By a suppressor mutant screen in fission yeast, we find a point mutation in the rho1 gene that confers resistance to O1. Consistent with the idea that O1 is the direct inhibitor of Rho1, O1 reduced the cellular amount of activated, GTP-bound Rho1 in wild-type cells, but not in the O1-resistant mutant cells, in which the evolutionarily conserved Ala62 residue is mutated to Thr. Similarly, O1 inhibits activity of the human orthologue RhoA GTPase in tissue culture cells. Our studies illustrate the power of yeast phenotypic screens in the identification and characterization of drugs relevant to human cells and have identified a novel GTPase inhibitor for fission yeast and human cells. |
format | Online Article Text |
id | pubmed-9974304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99743042023-03-01 Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells Morishita, Jun Nurse, Paul Open Biol Research The Rho GTPase family proteins are key regulators of cytoskeletal dynamics. Deregulated activity of Rho GTPases is associated with cancers and neurodegenerative diseases, and their potential as drug targets has long been recognized. Using an economically effective drug screening workflow in fission yeast and human cells, we have identified a Rho GTPase inhibitor, O1. By a suppressor mutant screen in fission yeast, we find a point mutation in the rho1 gene that confers resistance to O1. Consistent with the idea that O1 is the direct inhibitor of Rho1, O1 reduced the cellular amount of activated, GTP-bound Rho1 in wild-type cells, but not in the O1-resistant mutant cells, in which the evolutionarily conserved Ala62 residue is mutated to Thr. Similarly, O1 inhibits activity of the human orthologue RhoA GTPase in tissue culture cells. Our studies illustrate the power of yeast phenotypic screens in the identification and characterization of drugs relevant to human cells and have identified a novel GTPase inhibitor for fission yeast and human cells. The Royal Society 2023-03-01 /pmc/articles/PMC9974304/ /pubmed/36854376 http://dx.doi.org/10.1098/rsob.220185 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Morishita, Jun Nurse, Paul Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title | Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title_full | Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title_fullStr | Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title_full_unstemmed | Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title_short | Identification of a small RhoA GTPase inhibitor effective in fission yeast and human cells |
title_sort | identification of a small rhoa gtpase inhibitor effective in fission yeast and human cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974304/ https://www.ncbi.nlm.nih.gov/pubmed/36854376 http://dx.doi.org/10.1098/rsob.220185 |
work_keys_str_mv | AT morishitajun identificationofasmallrhoagtpaseinhibitoreffectiveinfissionyeastandhumancells AT nursepaul identificationofasmallrhoagtpaseinhibitoreffectiveinfissionyeastandhumancells |