Cargando…
Continuous exposure to red light induces photorefractoriness in broiler breeder pullets
The management of body weight (BW) in broiler breeder pullets is critical to offset the negative correlation between their growth potential and reproductive success. Therefore, a precision feeding system was developed to allocate feed individually based on real-time BW in more frequent, smaller port...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974448/ https://www.ncbi.nlm.nih.gov/pubmed/36842297 http://dx.doi.org/10.1016/j.psj.2023.102542 |
Sumario: | The management of body weight (BW) in broiler breeder pullets is critical to offset the negative correlation between their growth potential and reproductive success. Therefore, a precision feeding system was developed to allocate feed individually based on real-time BW in more frequent, smaller portions. However, this system requires access beyond the 8 h daylength of the rearing period. Since green and red spectra have been shown to stimulate growth and sexual maturation, respectively, this study aimed to evaluate the impact of continuous supplemental illumination of feeders with monochromatic wavelengths on sexual maturation. Furthermore, the best combination of supplemental and daytime lighting for optimizing the pullet-to-hen transition period was investigated. This study contained a 2 × 4 × 2 factorial arrangement, with 2 daytime lights (dtRED and dtGREEN; n = 2 rooms), 4 supplemental lights (sBLUE, sGREEN, sRED, and sCON; n = 12 pens), and 2 supplemental intensities (High and Low). At 3 wk of age (woa), 480 female Ross 708 chicks were randomly distributed across treatments (n = 10/pen). All birds were feed restricted per management guidelines and maintained under 8 h of dtRED or dtGREEN. Birds were photostimulated at 20 woa with 14L:10D. All birds were weighed weekly, with age at first egg (AFE) and production rate calculated weekly per pen. Birds under sRED were heavier than all other treatments from 27 woa to the end of the study (P < 0.001; 30 woa), resulting in hens that were over 400-g heavier. This resulted from a delayed AFE and lower production rate under sRED, with higher intensity further hindering reproductive performance (P < 0.001). Interestingly, despite the inhibitory effect of continuous red lighting (sRED) on reproduction, dtRED resulted in a 3.15% higher rate of lay than dtGREEN. Therefore, this study suggests that while red light remains superior at stimulating reproduction, continuous red supplemental lighting results in photorefractoriness. Thus, we recommend green light in PF systems. |
---|