Cargando…

The circadian demethylation of a unique intronic deoxymethylCpG-rich island boosts the transcription of its cognate circadian clock output gene

We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation–methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Misra, Nisha, Damara, Manohar, Ye, Tao, Chambon, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974474/
https://www.ncbi.nlm.nih.gov/pubmed/36791105
http://dx.doi.org/10.1073/pnas.2214062120
Descripción
Sumario:We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation–methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation–methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.