Cargando…
Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions
Deep learning prediction of diffusion MRI (DMRI) data relies on the utilization of effective loss functions. Existing losses typically measure the signal-wise differences between the predicted and target DMRI data without considering the quality of derived diffusion scalars that are eventually utili...
Autores principales: | Chen, Geng, Hong, Yoonmi, Huynh, Khoi Minh, Yap, Pew-Thian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974781/ https://www.ncbi.nlm.nih.gov/pubmed/36682154 http://dx.doi.org/10.1016/j.media.2023.102742 |
Ejemplares similares
-
Rapid Diffusion Magnetic Resonance Imaging Using Slice-Interleaved Encoding
por: Xu, Tiantian, et al.
Publicado: (2022) -
Robust Fusion of Diffusion MRI Data for Template Construction
por: Yang, Zhanlong, et al.
Publicado: (2017) -
Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space
por: Chen, Geng, et al.
Publicado: (2018) -
Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
por: Chen, Geng, et al.
Publicado: (2016) -
Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI with Limited and Noisy Annotations
por: Liu, Siyuan, et al.
Publicado: (2020)