Cargando…

Triphenyl phosphate-induced pericardial edema in zebrafish embryos is dependent on the ionic strength of exposure media

Pericardial edema is commonly observed in zebrafish embryo-based chemical toxicity screens, and a mechanism underlying edema may be disruption of embryonic osmoregulation. Therefore, the objective of this study was to identify whether triphenyl phosphate (TPHP) – a widely used aryl phosphate ester-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiegand, Jenna, Avila-Barnard, Sarah, Nemarugommula, Charvita, Lyons, David, Zhang, Sharon, Stapleton, Heather M., Volz, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974852/
https://www.ncbi.nlm.nih.gov/pubmed/36680802
http://dx.doi.org/10.1016/j.envint.2023.107757
Descripción
Sumario:Pericardial edema is commonly observed in zebrafish embryo-based chemical toxicity screens, and a mechanism underlying edema may be disruption of embryonic osmoregulation. Therefore, the objective of this study was to identify whether triphenyl phosphate (TPHP) – a widely used aryl phosphate ester-based flame retardant – induces pericardial edema via impacts on osmoregulation within embryonic zebrafish. In addition to an increase in TPHP-induced microridges in the embryonic yolk sac epithelium, an increase in ionic strength of exposure media exacerbated TPHP-induced pericardial edema when embryos were exposed from 24 to 72 h post-fertilization (hpf). However, there was no difference in embryonic sodium concentrations in situ within TPHP-exposed embryos relative to embryos exposed to vehicle (0.1% DMSO) from 24 to 72 hpf. Interestingly, increasing the osmolarity of exposure media with mannitol (an osmotic diuretic which mitigates TPHP-induced pericardial edema) and increasing the ionic strength of the exposure media (which exacerbates TPHP-induced pericardial edema) did not affect embryonic doses of TPHP, suggesting that TPHP uptake was not altered under these varying experimental conditions. Overall, our findings suggest that TPHP-induced pericardial edema within zebrafish embryos is dependent on the ionic strength of exposure media, underscoring the importance of further standardization of exposure media and embryo rearing protocols in zebrafish-based chemical toxicity screening assays.