Cargando…
Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound
INTRODUCTION AND HYPOTHESIS: The tendency toward population-based screening programs for prostate cancer (PCa) is expected to increase demand for prebiopsy imaging. This study hypothesizes that a machine learning image classification algorithm for three-dimensional multiparametric transrectal prosta...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975006/ https://www.ncbi.nlm.nih.gov/pubmed/36874606 http://dx.doi.org/10.1016/j.euros.2022.12.018 |
_version_ | 1784898796395692032 |
---|---|
author | Jager, Auke Postema, Arnoud W. Mischi, Massimo Wijkstra, Hessel Beerlage, Harrie P. Oddens, Jorg R. |
author_facet | Jager, Auke Postema, Arnoud W. Mischi, Massimo Wijkstra, Hessel Beerlage, Harrie P. Oddens, Jorg R. |
author_sort | Jager, Auke |
collection | PubMed |
description | INTRODUCTION AND HYPOTHESIS: The tendency toward population-based screening programs for prostate cancer (PCa) is expected to increase demand for prebiopsy imaging. This study hypothesizes that a machine learning image classification algorithm for three-dimensional multiparametric transrectal prostate ultrasound (3D mpUS) can detect PCa accurately. DESIGN: This is a phase 2 prospective multicenter diagnostic accuracy study. A total of 715 patients will be included in a period of approximately 2 yr. Patients are eligible in case of suspected PCa for which prostate biopsy is indicated or in case of biopsy-proven PCa for which radical prostatectomy (RP) will be performed. Exclusion criteria are prior treatment for PCa or contraindications for ultrasound contrast agents (UCAs). PROTOCOL OVERVIEW: Study participants will undergo 3D mpUS, consisting of 3D grayscale, 4D contrast-enhanced ultrasound, and 3D shear wave elastography (SWE). Whole-mount RP histopathology will provide the ground truth to train the image classification algorithm. Patients included prior to prostate biopsy will be used for subsequent preliminary validation. There is a small, anticipated risk for participants associated with the administration of a UCA. Informed consent has to be given prior to study participation, and (serious) adverse events will be reported. STATISTICAL ANALYSIS: The primary outcome will be the diagnostic performance of the algorithm for detecting clinically significant PCa (csPCa) on a per-voxel and a per-microregion level. Diagnostic performance will be reported as the area under the receiver operating characteristic curve. Clinically significant PCa is defined as the International Society of Urological grade group ≥2. Full-mount RP histopathology will be used as the reference standard. Secondary outcomes will be sensitivity, specificity, negative predictive value, and positive predictive value for csPCa on a per-patient level, evaluated in patients included prior to prostate biopsy, using biopsy results as the reference standard. A further analysis will be performed on the ability of the algorithm to differentiate between low-, intermediate-, and high-risk tumors. DISCUSSION AND SUMMARY: This study aims to develop an ultrasound-based imaging modality for PCa detection. Subsequent head-to-head validation trials with magnetic resonance imaging have to be performed in order to determine its role in clinical practice for risk stratification in patients suspected for PCa. |
format | Online Article Text |
id | pubmed-9975006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99750062023-03-02 Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound Jager, Auke Postema, Arnoud W. Mischi, Massimo Wijkstra, Hessel Beerlage, Harrie P. Oddens, Jorg R. Eur Urol Open Sci Trial Protocol INTRODUCTION AND HYPOTHESIS: The tendency toward population-based screening programs for prostate cancer (PCa) is expected to increase demand for prebiopsy imaging. This study hypothesizes that a machine learning image classification algorithm for three-dimensional multiparametric transrectal prostate ultrasound (3D mpUS) can detect PCa accurately. DESIGN: This is a phase 2 prospective multicenter diagnostic accuracy study. A total of 715 patients will be included in a period of approximately 2 yr. Patients are eligible in case of suspected PCa for which prostate biopsy is indicated or in case of biopsy-proven PCa for which radical prostatectomy (RP) will be performed. Exclusion criteria are prior treatment for PCa or contraindications for ultrasound contrast agents (UCAs). PROTOCOL OVERVIEW: Study participants will undergo 3D mpUS, consisting of 3D grayscale, 4D contrast-enhanced ultrasound, and 3D shear wave elastography (SWE). Whole-mount RP histopathology will provide the ground truth to train the image classification algorithm. Patients included prior to prostate biopsy will be used for subsequent preliminary validation. There is a small, anticipated risk for participants associated with the administration of a UCA. Informed consent has to be given prior to study participation, and (serious) adverse events will be reported. STATISTICAL ANALYSIS: The primary outcome will be the diagnostic performance of the algorithm for detecting clinically significant PCa (csPCa) on a per-voxel and a per-microregion level. Diagnostic performance will be reported as the area under the receiver operating characteristic curve. Clinically significant PCa is defined as the International Society of Urological grade group ≥2. Full-mount RP histopathology will be used as the reference standard. Secondary outcomes will be sensitivity, specificity, negative predictive value, and positive predictive value for csPCa on a per-patient level, evaluated in patients included prior to prostate biopsy, using biopsy results as the reference standard. A further analysis will be performed on the ability of the algorithm to differentiate between low-, intermediate-, and high-risk tumors. DISCUSSION AND SUMMARY: This study aims to develop an ultrasound-based imaging modality for PCa detection. Subsequent head-to-head validation trials with magnetic resonance imaging have to be performed in order to determine its role in clinical practice for risk stratification in patients suspected for PCa. Elsevier 2023-01-26 /pmc/articles/PMC9975006/ /pubmed/36874606 http://dx.doi.org/10.1016/j.euros.2022.12.018 Text en © 2023 Amsterdam University Medical Centers https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Trial Protocol Jager, Auke Postema, Arnoud W. Mischi, Massimo Wijkstra, Hessel Beerlage, Harrie P. Oddens, Jorg R. Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title | Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title_full | Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title_fullStr | Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title_full_unstemmed | Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title_short | Clinical Trial Protocol: Developing an Image Classification Algorithm for Prostate Cancer Diagnosis on Three-dimensional Multiparametric Transrectal Ultrasound |
title_sort | clinical trial protocol: developing an image classification algorithm for prostate cancer diagnosis on three-dimensional multiparametric transrectal ultrasound |
topic | Trial Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975006/ https://www.ncbi.nlm.nih.gov/pubmed/36874606 http://dx.doi.org/10.1016/j.euros.2022.12.018 |
work_keys_str_mv | AT jagerauke clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound AT postemaarnoudw clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound AT mischimassimo clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound AT wijkstrahessel clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound AT beerlageharriep clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound AT oddensjorgr clinicaltrialprotocoldevelopinganimageclassificationalgorithmforprostatecancerdiagnosisonthreedimensionalmultiparametrictransrectalultrasound |