Cargando…
DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence
Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. However, most AI-based models are mainly built using high-quality images preprocessed in the laboratory, which is not representative of real-world settings. This dataset bias proves a major drive...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975093/ https://www.ncbi.nlm.nih.gov/pubmed/36669488 http://dx.doi.org/10.1016/j.xcrm.2022.100912 |
_version_ | 1784898800799711232 |
---|---|
author | Liu, Lixue Wu, Xiaohang Lin, Duoru Zhao, Lanqin Li, Mingyuan Yun, Dongyuan Lin, Zhenzhe Pang, Jianyu Li, Longhui Wu, Yuxuan Lai, Weiyi Xiao, Wei Shang, Yuanjun Feng, Weibo Tan, Xiao Li, Qiang Liu, Shenzhen Lin, Xinxin Sun, Jiaxin Zhao, Yiqi Yang, Ximei Ye, Qinying Zhong, Yuesi Huang, Xi He, Yuan Fu, Ziwei Xiang, Yi Zhang, Li Zhao, Mingwei Qu, Jinfeng Xu, Fan Lu, Peng Li, Jianqiao Xu, Fabao Wei, Wenbin Dong, Li Dai, Guangzheng He, Xingru Yan, Wentao Zhu, Qiaolin Lu, Linna Zhang, Jiaying Zhou, Wei Meng, Xiangda Li, Shiying Shen, Mei Jiang, Qin Chen, Nan Zhou, Xingtao Li, Meiyan Wang, Yan Zou, Haohan Zhong, Hua Yang, Wenyan Shou, Wulin Zhong, Xingwu Yang, Zhenduo Ding, Lin Hu, Yongcheng Tan, Gang He, Wanji Zhao, Xin Chen, Yuzhong Liu, Yizhi Lin, Haotian |
author_facet | Liu, Lixue Wu, Xiaohang Lin, Duoru Zhao, Lanqin Li, Mingyuan Yun, Dongyuan Lin, Zhenzhe Pang, Jianyu Li, Longhui Wu, Yuxuan Lai, Weiyi Xiao, Wei Shang, Yuanjun Feng, Weibo Tan, Xiao Li, Qiang Liu, Shenzhen Lin, Xinxin Sun, Jiaxin Zhao, Yiqi Yang, Ximei Ye, Qinying Zhong, Yuesi Huang, Xi He, Yuan Fu, Ziwei Xiang, Yi Zhang, Li Zhao, Mingwei Qu, Jinfeng Xu, Fan Lu, Peng Li, Jianqiao Xu, Fabao Wei, Wenbin Dong, Li Dai, Guangzheng He, Xingru Yan, Wentao Zhu, Qiaolin Lu, Linna Zhang, Jiaying Zhou, Wei Meng, Xiangda Li, Shiying Shen, Mei Jiang, Qin Chen, Nan Zhou, Xingtao Li, Meiyan Wang, Yan Zou, Haohan Zhong, Hua Yang, Wenyan Shou, Wulin Zhong, Xingwu Yang, Zhenduo Ding, Lin Hu, Yongcheng Tan, Gang He, Wanji Zhao, Xin Chen, Yuzhong Liu, Yizhi Lin, Haotian |
author_sort | Liu, Lixue |
collection | PubMed |
description | Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. However, most AI-based models are mainly built using high-quality images preprocessed in the laboratory, which is not representative of real-world settings. This dataset bias proves a major driver of AI system dysfunction. Inspired by the design of flow cytometry, DeepFundus, a deep-learning-based fundus image classifier, is developed to provide automated and multidimensional image sorting to address this data quality gap. DeepFundus achieves areas under the receiver operating characteristic curves (AUCs) over 0.9 in image classification concerning overall quality, clinical quality factors, and structural quality analysis on both the internal test and national validation datasets. Additionally, DeepFundus can be integrated into both model development and clinical application of AI diagnostics to significantly enhance model performance for detecting multiple retinopathies. DeepFundus can be used to construct a data-driven paradigm for improving the entire life cycle of medical AI practice. |
format | Online Article Text |
id | pubmed-9975093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99750932023-03-02 DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence Liu, Lixue Wu, Xiaohang Lin, Duoru Zhao, Lanqin Li, Mingyuan Yun, Dongyuan Lin, Zhenzhe Pang, Jianyu Li, Longhui Wu, Yuxuan Lai, Weiyi Xiao, Wei Shang, Yuanjun Feng, Weibo Tan, Xiao Li, Qiang Liu, Shenzhen Lin, Xinxin Sun, Jiaxin Zhao, Yiqi Yang, Ximei Ye, Qinying Zhong, Yuesi Huang, Xi He, Yuan Fu, Ziwei Xiang, Yi Zhang, Li Zhao, Mingwei Qu, Jinfeng Xu, Fan Lu, Peng Li, Jianqiao Xu, Fabao Wei, Wenbin Dong, Li Dai, Guangzheng He, Xingru Yan, Wentao Zhu, Qiaolin Lu, Linna Zhang, Jiaying Zhou, Wei Meng, Xiangda Li, Shiying Shen, Mei Jiang, Qin Chen, Nan Zhou, Xingtao Li, Meiyan Wang, Yan Zou, Haohan Zhong, Hua Yang, Wenyan Shou, Wulin Zhong, Xingwu Yang, Zhenduo Ding, Lin Hu, Yongcheng Tan, Gang He, Wanji Zhao, Xin Chen, Yuzhong Liu, Yizhi Lin, Haotian Cell Rep Med Article Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. However, most AI-based models are mainly built using high-quality images preprocessed in the laboratory, which is not representative of real-world settings. This dataset bias proves a major driver of AI system dysfunction. Inspired by the design of flow cytometry, DeepFundus, a deep-learning-based fundus image classifier, is developed to provide automated and multidimensional image sorting to address this data quality gap. DeepFundus achieves areas under the receiver operating characteristic curves (AUCs) over 0.9 in image classification concerning overall quality, clinical quality factors, and structural quality analysis on both the internal test and national validation datasets. Additionally, DeepFundus can be integrated into both model development and clinical application of AI diagnostics to significantly enhance model performance for detecting multiple retinopathies. DeepFundus can be used to construct a data-driven paradigm for improving the entire life cycle of medical AI practice. Elsevier 2023-01-19 /pmc/articles/PMC9975093/ /pubmed/36669488 http://dx.doi.org/10.1016/j.xcrm.2022.100912 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Liu, Lixue Wu, Xiaohang Lin, Duoru Zhao, Lanqin Li, Mingyuan Yun, Dongyuan Lin, Zhenzhe Pang, Jianyu Li, Longhui Wu, Yuxuan Lai, Weiyi Xiao, Wei Shang, Yuanjun Feng, Weibo Tan, Xiao Li, Qiang Liu, Shenzhen Lin, Xinxin Sun, Jiaxin Zhao, Yiqi Yang, Ximei Ye, Qinying Zhong, Yuesi Huang, Xi He, Yuan Fu, Ziwei Xiang, Yi Zhang, Li Zhao, Mingwei Qu, Jinfeng Xu, Fan Lu, Peng Li, Jianqiao Xu, Fabao Wei, Wenbin Dong, Li Dai, Guangzheng He, Xingru Yan, Wentao Zhu, Qiaolin Lu, Linna Zhang, Jiaying Zhou, Wei Meng, Xiangda Li, Shiying Shen, Mei Jiang, Qin Chen, Nan Zhou, Xingtao Li, Meiyan Wang, Yan Zou, Haohan Zhong, Hua Yang, Wenyan Shou, Wulin Zhong, Xingwu Yang, Zhenduo Ding, Lin Hu, Yongcheng Tan, Gang He, Wanji Zhao, Xin Chen, Yuzhong Liu, Yizhi Lin, Haotian DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title | DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title_full | DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title_fullStr | DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title_full_unstemmed | DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title_short | DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
title_sort | deepfundus: a flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975093/ https://www.ncbi.nlm.nih.gov/pubmed/36669488 http://dx.doi.org/10.1016/j.xcrm.2022.100912 |
work_keys_str_mv | AT liulixue deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT wuxiaohang deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT linduoru deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhaolanqin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT limingyuan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yundongyuan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT linzhenzhe deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT pangjianyu deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT lilonghui deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT wuyuxuan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT laiweiyi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT xiaowei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT shangyuanjun deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT fengweibo deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT tanxiao deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT liqiang deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT liushenzhen deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT linxinxin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT sunjiaxin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhaoyiqi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yangximei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yeqinying deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhongyuesi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT huangxi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT heyuan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT fuziwei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT xiangyi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhangli deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhaomingwei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT qujinfeng deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT xufan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT lupeng deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT lijianqiao deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT xufabao deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT weiwenbin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT dongli deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT daiguangzheng deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT hexingru deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yanwentao deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhuqiaolin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT lulinna deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhangjiaying deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhouwei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT mengxiangda deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT lishiying deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT shenmei deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT jiangqin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT chennan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhouxingtao deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT limeiyan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT wangyan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zouhaohan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhonghua deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yangwenyan deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT shouwulin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhongxingwu deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT yangzhenduo deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT dinglin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT huyongcheng deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT tangang deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT hewanji deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT zhaoxin deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT chenyuzhong deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT liuyizhi deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence AT linhaotian deepfundusaflowcytometrylikeimagequalityclassifierforboostingthewholelifecycleofmedicalartificialintelligence |