Cargando…
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
The demand for anomaly detection, which involves the identification of abnormal samples, has continued to increase in various domains. In particular, with increases in the data volume of medical imaging, the demand for automated screening systems has also risen. Consequently, in actual clinical prac...
Autores principales: | Kim, Minki, Moon, Ki-Ryum, Lee, Byoung-Dai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975177/ https://www.ncbi.nlm.nih.gov/pubmed/36854967 http://dx.doi.org/10.1038/s41598-023-30589-w |
Ejemplares similares
-
Supervised and unsupervised language modelling in Chest X-Ray radiological reports
por: Drozdov, Ignat, et al.
Publicado: (2020) -
Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays
por: Maharjan, Jenish, et al.
Publicado: (2021) -
Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
por: Kim, Minki, et al.
Publicado: (2021) -
The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection
por: Ismael, Aras M., et al.
Publicado: (2020) -
Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
por: Belgiu, Mariana, et al.
Publicado: (2014)