Cargando…
A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975321/ https://www.ncbi.nlm.nih.gov/pubmed/36787735 http://dx.doi.org/10.1016/j.xcrm.2023.100944 |
_version_ | 1784898850898575360 |
---|---|
author | Diaz-Canestro, Candela Chen, Jiarui Liu, Yan Han, Hao Wang, Yao Honoré, Eric Lee, Chi-Ho Lam, Karen S.L. Tse, Michael Andrew Xu, Aimin |
author_facet | Diaz-Canestro, Candela Chen, Jiarui Liu, Yan Han, Hao Wang, Yao Honoré, Eric Lee, Chi-Ho Lam, Karen S.L. Tse, Michael Andrew Xu, Aimin |
author_sort | Diaz-Canestro, Candela |
collection | PubMed |
description | The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training. |
format | Online Article Text |
id | pubmed-9975321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99753212023-03-02 A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes Diaz-Canestro, Candela Chen, Jiarui Liu, Yan Han, Hao Wang, Yao Honoré, Eric Lee, Chi-Ho Lam, Karen S.L. Tse, Michael Andrew Xu, Aimin Cell Rep Med Article The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training. Elsevier 2023-02-13 /pmc/articles/PMC9975321/ /pubmed/36787735 http://dx.doi.org/10.1016/j.xcrm.2023.100944 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Diaz-Canestro, Candela Chen, Jiarui Liu, Yan Han, Hao Wang, Yao Honoré, Eric Lee, Chi-Ho Lam, Karen S.L. Tse, Michael Andrew Xu, Aimin A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title | A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title_full | A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title_fullStr | A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title_full_unstemmed | A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title_short | A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
title_sort | machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975321/ https://www.ncbi.nlm.nih.gov/pubmed/36787735 http://dx.doi.org/10.1016/j.xcrm.2023.100944 |
work_keys_str_mv | AT diazcanestrocandela amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT chenjiarui amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT liuyan amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT hanhao amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT wangyao amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT honoreeric amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT leechiho amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT lamkarensl amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT tsemichaelandrew amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT xuaimin amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT diazcanestrocandela machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT chenjiarui machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT liuyan machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT hanhao machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT wangyao machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT honoreeric machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT leechiho machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT lamkarensl machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT tsemichaelandrew machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes AT xuaimin machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes |