Cargando…

A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes

The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of...

Descripción completa

Detalles Bibliográficos
Autores principales: Diaz-Canestro, Candela, Chen, Jiarui, Liu, Yan, Han, Hao, Wang, Yao, Honoré, Eric, Lee, Chi-Ho, Lam, Karen S.L., Tse, Michael Andrew, Xu, Aimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975321/
https://www.ncbi.nlm.nih.gov/pubmed/36787735
http://dx.doi.org/10.1016/j.xcrm.2023.100944
_version_ 1784898850898575360
author Diaz-Canestro, Candela
Chen, Jiarui
Liu, Yan
Han, Hao
Wang, Yao
Honoré, Eric
Lee, Chi-Ho
Lam, Karen S.L.
Tse, Michael Andrew
Xu, Aimin
author_facet Diaz-Canestro, Candela
Chen, Jiarui
Liu, Yan
Han, Hao
Wang, Yao
Honoré, Eric
Lee, Chi-Ho
Lam, Karen S.L.
Tse, Michael Andrew
Xu, Aimin
author_sort Diaz-Canestro, Candela
collection PubMed
description The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.
format Online
Article
Text
id pubmed-9975321
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99753212023-03-02 A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes Diaz-Canestro, Candela Chen, Jiarui Liu, Yan Han, Hao Wang, Yao Honoré, Eric Lee, Chi-Ho Lam, Karen S.L. Tse, Michael Andrew Xu, Aimin Cell Rep Med Article The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training. Elsevier 2023-02-13 /pmc/articles/PMC9975321/ /pubmed/36787735 http://dx.doi.org/10.1016/j.xcrm.2023.100944 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Diaz-Canestro, Candela
Chen, Jiarui
Liu, Yan
Han, Hao
Wang, Yao
Honoré, Eric
Lee, Chi-Ho
Lam, Karen S.L.
Tse, Michael Andrew
Xu, Aimin
A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title_full A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title_fullStr A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title_full_unstemmed A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title_short A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
title_sort machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975321/
https://www.ncbi.nlm.nih.gov/pubmed/36787735
http://dx.doi.org/10.1016/j.xcrm.2023.100944
work_keys_str_mv AT diazcanestrocandela amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT chenjiarui amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT liuyan amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT hanhao amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT wangyao amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT honoreeric amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT leechiho amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT lamkarensl amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT tsemichaelandrew amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT xuaimin amachinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT diazcanestrocandela machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT chenjiarui machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT liuyan machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT hanhao machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT wangyao machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT honoreeric machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT leechiho machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT lamkarensl machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT tsemichaelandrew machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes
AT xuaimin machinelearningalgorithmintegratingbaselineserumproteomicsignaturespredictsexerciseresponsivenessinoverweightmaleswithprediabetes