Cargando…
Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases
Purpose: We aim to present effective and computer aided diagnostics in the field of ophthalmology and improve eye health. This study aims to create an automated deep learning based system for categorizing fundus images into three classes: normal, macular degeneration and tessellated fundus for the t...
Autores principales: | Pan, Yuhang, Liu, Junru, Cai, Yuting, Yang, Xuemei, Zhang, Zhucheng, Long, Hong, Zhao, Ketong, Yu, Xia, Zeng, Cui, Duan, Jueni, Xiao, Ping, Li, Jingbo, Cai, Feiyue, Yang, Xiaoyun, Tan, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975334/ https://www.ncbi.nlm.nih.gov/pubmed/36875027 http://dx.doi.org/10.3389/fphys.2023.1126780 |
Ejemplares similares
-
Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation
por: Huang, Yijin, et al.
Publicado: (2023) -
Classification of lungs infected COVID-19 images based on inception-ResNet
por: Chen, Yunfeng, et al.
Publicado: (2022) -
Maize seed appearance quality assessment based on improved Inception-ResNet
por: Song, Chang, et al.
Publicado: (2023) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis
por: Sakli, Nizar, et al.
Publicado: (2022)