Cargando…
Ergo, SMIRK is safe: a safety case for a machine learning component in a pedestrian automatic emergency brake system
Integration of machine learning (ML) components in critical applications introduces novel challenges for software certification and verification. New safety standards and technical guidelines are under development to support the safety of ML-based systems, e.g., ISO 21448 SOTIF for the automotive do...
Autores principales: | Borg, Markus, Henriksson, Jens, Socha, Kasper, Lennartsson, Olof, Sonnsjö Lönegren, Elias, Bui, Thanh, Tomaszewski, Piotr, Sathyamoorthy, Sankar Raman, Brink, Sebastian, Helali Moghadam, Mahshid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975451/ http://dx.doi.org/10.1007/s11219-022-09613-1 |
Ejemplares similares
-
Enumeration of Ring–Chain Tautomers Based on
SMIRKS Rules
por: Guasch, Laura, et al.
Publicado: (2014) -
SMiRK: an Automated Pipeline for miRNA Analysis
por: Milholland, Brandon, et al.
Publicado: (2015) -
Ergo : revista de filosofía.
Publicado: (1987) -
Cogito ergo sum
por: Angelos, G.
Publicado: (2020) -
Cogito ergo sum: A commentary
por: Watts, Clark, et al.
Publicado: (2011)