Cargando…
Infiltration of Tumors Is Regulated by T cell–Intrinsic Nitric Oxide Synthesis
Nitric oxide (NO) is a signaling molecule produced by NO synthases (NOS1–3) to control processes such as neurotransmission, vascular permeability, and immune function. Although myeloid cell–derived NO has been shown to suppress T-cell responses, the role of NO synthesis in T cells themselves is not...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975666/ https://www.ncbi.nlm.nih.gov/pubmed/36574610 http://dx.doi.org/10.1158/2326-6066.CIR-22-0387 |
Sumario: | Nitric oxide (NO) is a signaling molecule produced by NO synthases (NOS1–3) to control processes such as neurotransmission, vascular permeability, and immune function. Although myeloid cell–derived NO has been shown to suppress T-cell responses, the role of NO synthesis in T cells themselves is not well understood. Here, we showed that significant amounts of NO were synthesized in human and murine CD8(+) T cells following activation. Tumor growth was significantly accelerated in a T cell–specific, Nos2-null mouse model. Genetic deletion of Nos2 expression in murine T cells altered effector differentiation, reduced tumor infiltration, and inhibited recall responses and adoptive cell transfer function. These data show that endogenous NO production plays a critical role in T cell–mediated tumor immunity. |
---|