Cargando…

A review of efficient Multilevel Monte Carlo algorithms for derivative pricing and risk management

In this article, we present a review of the recent developments on the topic of Multilevel Monte Carlo (MLMC) algorithms, in the paradigm of applications in financial engineering. We specifically focus on the recent studies conducted in two subareas, namely, option pricing and financial risk managem...

Descripción completa

Detalles Bibliográficos
Autores principales: Sinha, Devang, Chakrabarty, Siddhartha P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975692/
https://www.ncbi.nlm.nih.gov/pubmed/36875343
http://dx.doi.org/10.1016/j.mex.2023.102078
Descripción
Sumario:In this article, we present a review of the recent developments on the topic of Multilevel Monte Carlo (MLMC) algorithms, in the paradigm of applications in financial engineering. We specifically focus on the recent studies conducted in two subareas, namely, option pricing and financial risk management. For the former, the discussion involves incorporation of the importance sampling algorithm, in conjunction with the MLMC estimator, thereby constructing a hybrid algorithms in order to achieve reduction for the overall variance of the estimator. In case of the latter, we discuss the studies carried out in order to construct an efficient algorithm in order to estimate the risk measures of Value-at-Risk (VaR) and Conditional Var (CVaR). In this regard, we briefly discuss the motivation and the construction of an adaptive sampling algorithm with an aim to efficiently estimate the nested expectation, which, in general is computationally expensive.