Cargando…

Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset

The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering mul...

Descripción completa

Detalles Bibliográficos
Autores principales: de Paiva, Bruno Barbosa Miranda, Pereira, Polianna Delfino, de Andrade, Claudio Moisés Valiense, Gomes, Virginia Mara Reis, Souza-Silva, Maira Viana Rego, Martins, Karina Paula Medeiros Prado, Sales, Thaís Lorenna Souza, de Carvalho, Rafael Lima Rodrigues, Pires, Magda Carvalho, Ramos, Lucas Emanuel Ferreira, Silva, Rafael Tavares, de Freitas Martins Vieira, Alessandra, Nunes, Aline Gabrielle Sousa, de Oliveira Jorge, Alzira, de Oliveira Maurílio, Amanda, Scotton, Ana Luiza Bahia Alves, da Silva, Carla Thais Candida Alves, Cimini, Christiane Corrêa Rodrigues, Ponce, Daniela, Pereira, Elayne Crestani, Manenti, Euler Roberto Fernandes, Rodrigues, Fernanda d’Athayde, Anschau, Fernando, Botoni, Fernando Antônio, Bartolazzi, Frederico, Grizende, Genna Maira Santos, Noal, Helena Carolina, Duani, Helena, Gomes, Isabela Moraes, Costa, Jamille Hemétrio Salles Martins, di Sabatino Santos Guimarães, Júlia, Tupinambás, Julia Teixeira, Rugolo, Juliana Machado, Batista, Joanna d’Arc Lyra, de Alvarenga, Joice Coutinho, Chatkin, José Miguel, Ruschel, Karen Brasil, Zandoná, Liege Barella, Pinheiro, Lílian Santos, Menezes, Luanna Silva Monteiro, de Oliveira, Lucas Moyses Carvalho, Kopittke, Luciane, Assis, Luisa Argolo, Marques, Luiza Margoto, Raposo, Magda Cesar, Floriani, Maiara Anschau, Bicalho, Maria Aparecida Camargos, Nogueira, Matheus Carvalho Alves, de Oliveira, Neimy Ramos, Ziegelmann, Patricia Klarmann, Paraiso, Pedro Gibson, de Lima Martelli, Petrônio José, Senger, Roberta, Menezes, Rochele Mosmann, Francisco, Saionara Cristina, Araújo, Silvia Ferreira, Kurtz, Tatiana, Fereguetti, Tatiani Oliveira, de Oliveira, Thainara Conceição, Ribeiro, Yara Cristina Neves Marques Barbosa, Ramires, Yuri Carlotto, Lima, Maria Clara Pontello Barbosa, Carneiro, Marcelo, Bezerra, Adriana Falangola Benjamin, Schwarzbold, Alexandre Vargas, de Moura Costa, André Soares, Farace, Barbara Lopes, Silveira, Daniel Vitorio, de Almeida Cenci, Evelin Paola, Lucas, Fernanda Barbosa, Aranha, Fernando Graça, Bastos, Gisele Alsina Nader, Vietta, Giovanna Grunewald, Nascimento, Guilherme Fagundes, Vianna, Heloisa Reniers, Guimarães, Henrique Cerqueira, de Morais, Julia Drumond Parreiras, Moreira, Leila Beltrami, de Oliveira, Leonardo Seixas, de Deus Sousa, Lucas, de Souza Viana, Luciano, de Souza Cabral, Máderson Alvares, Ferreira, Maria Angélica Pires, de Godoy, Mariana Frizzo, de Figueiredo, Meire Pereira, Guimarães-Junior, Milton Henriques, de Paula de Sordi, Mônica Aparecida, da Cunha Severino Sampaio, Natália, Assaf, Pedro Ledic, Lutkmeier, Raquel, Valacio, Reginaldo Aparecido, Finger, Renan Goulart, de Freitas, Rufino, Guimarães, Silvana Mangeon Meirelles, Oliveira, Talita Fischer, Diniz, Thulio Henrique Oliveira, Gonçalves, Marcos André, Marcolino, Milena Soriano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975879/
https://www.ncbi.nlm.nih.gov/pubmed/36859446
http://dx.doi.org/10.1038/s41598-023-28579-z
_version_ 1784898972910878720
author de Paiva, Bruno Barbosa Miranda
Pereira, Polianna Delfino
de Andrade, Claudio Moisés Valiense
Gomes, Virginia Mara Reis
Souza-Silva, Maira Viana Rego
Martins, Karina Paula Medeiros Prado
Sales, Thaís Lorenna Souza
de Carvalho, Rafael Lima Rodrigues
Pires, Magda Carvalho
Ramos, Lucas Emanuel Ferreira
Silva, Rafael Tavares
de Freitas Martins Vieira, Alessandra
Nunes, Aline Gabrielle Sousa
de Oliveira Jorge, Alzira
de Oliveira Maurílio, Amanda
Scotton, Ana Luiza Bahia Alves
da Silva, Carla Thais Candida Alves
Cimini, Christiane Corrêa Rodrigues
Ponce, Daniela
Pereira, Elayne Crestani
Manenti, Euler Roberto Fernandes
Rodrigues, Fernanda d’Athayde
Anschau, Fernando
Botoni, Fernando Antônio
Bartolazzi, Frederico
Grizende, Genna Maira Santos
Noal, Helena Carolina
Duani, Helena
Gomes, Isabela Moraes
Costa, Jamille Hemétrio Salles Martins
di Sabatino Santos Guimarães, Júlia
Tupinambás, Julia Teixeira
Rugolo, Juliana Machado
Batista, Joanna d’Arc Lyra
de Alvarenga, Joice Coutinho
Chatkin, José Miguel
Ruschel, Karen Brasil
Zandoná, Liege Barella
Pinheiro, Lílian Santos
Menezes, Luanna Silva Monteiro
de Oliveira, Lucas Moyses Carvalho
Kopittke, Luciane
Assis, Luisa Argolo
Marques, Luiza Margoto
Raposo, Magda Cesar
Floriani, Maiara Anschau
Bicalho, Maria Aparecida Camargos
Nogueira, Matheus Carvalho Alves
de Oliveira, Neimy Ramos
Ziegelmann, Patricia Klarmann
Paraiso, Pedro Gibson
de Lima Martelli, Petrônio José
Senger, Roberta
Menezes, Rochele Mosmann
Francisco, Saionara Cristina
Araújo, Silvia Ferreira
Kurtz, Tatiana
Fereguetti, Tatiani Oliveira
de Oliveira, Thainara Conceição
Ribeiro, Yara Cristina Neves Marques Barbosa
Ramires, Yuri Carlotto
Lima, Maria Clara Pontello Barbosa
Carneiro, Marcelo
Bezerra, Adriana Falangola Benjamin
Schwarzbold, Alexandre Vargas
de Moura Costa, André Soares
Farace, Barbara Lopes
Silveira, Daniel Vitorio
de Almeida Cenci, Evelin Paola
Lucas, Fernanda Barbosa
Aranha, Fernando Graça
Bastos, Gisele Alsina Nader
Vietta, Giovanna Grunewald
Nascimento, Guilherme Fagundes
Vianna, Heloisa Reniers
Guimarães, Henrique Cerqueira
de Morais, Julia Drumond Parreiras
Moreira, Leila Beltrami
de Oliveira, Leonardo Seixas
de Deus Sousa, Lucas
de Souza Viana, Luciano
de Souza Cabral, Máderson Alvares
Ferreira, Maria Angélica Pires
de Godoy, Mariana Frizzo
de Figueiredo, Meire Pereira
Guimarães-Junior, Milton Henriques
de Paula de Sordi, Mônica Aparecida
da Cunha Severino Sampaio, Natália
Assaf, Pedro Ledic
Lutkmeier, Raquel
Valacio, Reginaldo Aparecido
Finger, Renan Goulart
de Freitas, Rufino
Guimarães, Silvana Mangeon Meirelles
Oliveira, Talita Fischer
Diniz, Thulio Henrique Oliveira
Gonçalves, Marcos André
Marcolino, Milena Soriano
author_facet de Paiva, Bruno Barbosa Miranda
Pereira, Polianna Delfino
de Andrade, Claudio Moisés Valiense
Gomes, Virginia Mara Reis
Souza-Silva, Maira Viana Rego
Martins, Karina Paula Medeiros Prado
Sales, Thaís Lorenna Souza
de Carvalho, Rafael Lima Rodrigues
Pires, Magda Carvalho
Ramos, Lucas Emanuel Ferreira
Silva, Rafael Tavares
de Freitas Martins Vieira, Alessandra
Nunes, Aline Gabrielle Sousa
de Oliveira Jorge, Alzira
de Oliveira Maurílio, Amanda
Scotton, Ana Luiza Bahia Alves
da Silva, Carla Thais Candida Alves
Cimini, Christiane Corrêa Rodrigues
Ponce, Daniela
Pereira, Elayne Crestani
Manenti, Euler Roberto Fernandes
Rodrigues, Fernanda d’Athayde
Anschau, Fernando
Botoni, Fernando Antônio
Bartolazzi, Frederico
Grizende, Genna Maira Santos
Noal, Helena Carolina
Duani, Helena
Gomes, Isabela Moraes
Costa, Jamille Hemétrio Salles Martins
di Sabatino Santos Guimarães, Júlia
Tupinambás, Julia Teixeira
Rugolo, Juliana Machado
Batista, Joanna d’Arc Lyra
de Alvarenga, Joice Coutinho
Chatkin, José Miguel
Ruschel, Karen Brasil
Zandoná, Liege Barella
Pinheiro, Lílian Santos
Menezes, Luanna Silva Monteiro
de Oliveira, Lucas Moyses Carvalho
Kopittke, Luciane
Assis, Luisa Argolo
Marques, Luiza Margoto
Raposo, Magda Cesar
Floriani, Maiara Anschau
Bicalho, Maria Aparecida Camargos
Nogueira, Matheus Carvalho Alves
de Oliveira, Neimy Ramos
Ziegelmann, Patricia Klarmann
Paraiso, Pedro Gibson
de Lima Martelli, Petrônio José
Senger, Roberta
Menezes, Rochele Mosmann
Francisco, Saionara Cristina
Araújo, Silvia Ferreira
Kurtz, Tatiana
Fereguetti, Tatiani Oliveira
de Oliveira, Thainara Conceição
Ribeiro, Yara Cristina Neves Marques Barbosa
Ramires, Yuri Carlotto
Lima, Maria Clara Pontello Barbosa
Carneiro, Marcelo
Bezerra, Adriana Falangola Benjamin
Schwarzbold, Alexandre Vargas
de Moura Costa, André Soares
Farace, Barbara Lopes
Silveira, Daniel Vitorio
de Almeida Cenci, Evelin Paola
Lucas, Fernanda Barbosa
Aranha, Fernando Graça
Bastos, Gisele Alsina Nader
Vietta, Giovanna Grunewald
Nascimento, Guilherme Fagundes
Vianna, Heloisa Reniers
Guimarães, Henrique Cerqueira
de Morais, Julia Drumond Parreiras
Moreira, Leila Beltrami
de Oliveira, Leonardo Seixas
de Deus Sousa, Lucas
de Souza Viana, Luciano
de Souza Cabral, Máderson Alvares
Ferreira, Maria Angélica Pires
de Godoy, Mariana Frizzo
de Figueiredo, Meire Pereira
Guimarães-Junior, Milton Henriques
de Paula de Sordi, Mônica Aparecida
da Cunha Severino Sampaio, Natália
Assaf, Pedro Ledic
Lutkmeier, Raquel
Valacio, Reginaldo Aparecido
Finger, Renan Goulart
de Freitas, Rufino
Guimarães, Silvana Mangeon Meirelles
Oliveira, Talita Fischer
Diniz, Thulio Henrique Oliveira
Gonçalves, Marcos André
Marcolino, Milena Soriano
author_sort de Paiva, Bruno Barbosa Miranda
collection PubMed
description The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering multiple techniques to build mortality prediction models, including modern machine learning (neural) algorithms and traditional statistical techniques, as well as meta-learning (ensemble) approaches. This study used a dataset from a multicenter cohort of 10,897 adult Brazilian COVID-19 patients, admitted from March/2020 to November/2021, including patients [median age 60 (interquartile range 48–71), 46% women]. We also proposed new original population-based meta-features that have not been devised in the literature. Stacking has shown to achieve the best results reported in the literature for the death prediction task, improving over previous state-of-the-art by more than 46% in Recall for predicting death, with AUROC 0.826 and MacroF1 of 65.4%. The newly proposed meta-features were highly discriminative of death, but fell short in producing large improvements in final prediction performance, demonstrating that we are possibly on the limits of the prediction capabilities that can be achieved with the current set of ML techniques and (meta-)features. Finally, we investigated how the trained models perform on different hospitals, showing that there are indeed large differences in classifier performance between different hospitals, further making the case that errors are produced by factors that cannot be modeled with the current predictors.
format Online
Article
Text
id pubmed-9975879
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99758792023-03-01 Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset de Paiva, Bruno Barbosa Miranda Pereira, Polianna Delfino de Andrade, Claudio Moisés Valiense Gomes, Virginia Mara Reis Souza-Silva, Maira Viana Rego Martins, Karina Paula Medeiros Prado Sales, Thaís Lorenna Souza de Carvalho, Rafael Lima Rodrigues Pires, Magda Carvalho Ramos, Lucas Emanuel Ferreira Silva, Rafael Tavares de Freitas Martins Vieira, Alessandra Nunes, Aline Gabrielle Sousa de Oliveira Jorge, Alzira de Oliveira Maurílio, Amanda Scotton, Ana Luiza Bahia Alves da Silva, Carla Thais Candida Alves Cimini, Christiane Corrêa Rodrigues Ponce, Daniela Pereira, Elayne Crestani Manenti, Euler Roberto Fernandes Rodrigues, Fernanda d’Athayde Anschau, Fernando Botoni, Fernando Antônio Bartolazzi, Frederico Grizende, Genna Maira Santos Noal, Helena Carolina Duani, Helena Gomes, Isabela Moraes Costa, Jamille Hemétrio Salles Martins di Sabatino Santos Guimarães, Júlia Tupinambás, Julia Teixeira Rugolo, Juliana Machado Batista, Joanna d’Arc Lyra de Alvarenga, Joice Coutinho Chatkin, José Miguel Ruschel, Karen Brasil Zandoná, Liege Barella Pinheiro, Lílian Santos Menezes, Luanna Silva Monteiro de Oliveira, Lucas Moyses Carvalho Kopittke, Luciane Assis, Luisa Argolo Marques, Luiza Margoto Raposo, Magda Cesar Floriani, Maiara Anschau Bicalho, Maria Aparecida Camargos Nogueira, Matheus Carvalho Alves de Oliveira, Neimy Ramos Ziegelmann, Patricia Klarmann Paraiso, Pedro Gibson de Lima Martelli, Petrônio José Senger, Roberta Menezes, Rochele Mosmann Francisco, Saionara Cristina Araújo, Silvia Ferreira Kurtz, Tatiana Fereguetti, Tatiani Oliveira de Oliveira, Thainara Conceição Ribeiro, Yara Cristina Neves Marques Barbosa Ramires, Yuri Carlotto Lima, Maria Clara Pontello Barbosa Carneiro, Marcelo Bezerra, Adriana Falangola Benjamin Schwarzbold, Alexandre Vargas de Moura Costa, André Soares Farace, Barbara Lopes Silveira, Daniel Vitorio de Almeida Cenci, Evelin Paola Lucas, Fernanda Barbosa Aranha, Fernando Graça Bastos, Gisele Alsina Nader Vietta, Giovanna Grunewald Nascimento, Guilherme Fagundes Vianna, Heloisa Reniers Guimarães, Henrique Cerqueira de Morais, Julia Drumond Parreiras Moreira, Leila Beltrami de Oliveira, Leonardo Seixas de Deus Sousa, Lucas de Souza Viana, Luciano de Souza Cabral, Máderson Alvares Ferreira, Maria Angélica Pires de Godoy, Mariana Frizzo de Figueiredo, Meire Pereira Guimarães-Junior, Milton Henriques de Paula de Sordi, Mônica Aparecida da Cunha Severino Sampaio, Natália Assaf, Pedro Ledic Lutkmeier, Raquel Valacio, Reginaldo Aparecido Finger, Renan Goulart de Freitas, Rufino Guimarães, Silvana Mangeon Meirelles Oliveira, Talita Fischer Diniz, Thulio Henrique Oliveira Gonçalves, Marcos André Marcolino, Milena Soriano Sci Rep Article The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering multiple techniques to build mortality prediction models, including modern machine learning (neural) algorithms and traditional statistical techniques, as well as meta-learning (ensemble) approaches. This study used a dataset from a multicenter cohort of 10,897 adult Brazilian COVID-19 patients, admitted from March/2020 to November/2021, including patients [median age 60 (interquartile range 48–71), 46% women]. We also proposed new original population-based meta-features that have not been devised in the literature. Stacking has shown to achieve the best results reported in the literature for the death prediction task, improving over previous state-of-the-art by more than 46% in Recall for predicting death, with AUROC 0.826 and MacroF1 of 65.4%. The newly proposed meta-features were highly discriminative of death, but fell short in producing large improvements in final prediction performance, demonstrating that we are possibly on the limits of the prediction capabilities that can be achieved with the current set of ML techniques and (meta-)features. Finally, we investigated how the trained models perform on different hospitals, showing that there are indeed large differences in classifier performance between different hospitals, further making the case that errors are produced by factors that cannot be modeled with the current predictors. Nature Publishing Group UK 2023-03-01 /pmc/articles/PMC9975879/ /pubmed/36859446 http://dx.doi.org/10.1038/s41598-023-28579-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
de Paiva, Bruno Barbosa Miranda
Pereira, Polianna Delfino
de Andrade, Claudio Moisés Valiense
Gomes, Virginia Mara Reis
Souza-Silva, Maira Viana Rego
Martins, Karina Paula Medeiros Prado
Sales, Thaís Lorenna Souza
de Carvalho, Rafael Lima Rodrigues
Pires, Magda Carvalho
Ramos, Lucas Emanuel Ferreira
Silva, Rafael Tavares
de Freitas Martins Vieira, Alessandra
Nunes, Aline Gabrielle Sousa
de Oliveira Jorge, Alzira
de Oliveira Maurílio, Amanda
Scotton, Ana Luiza Bahia Alves
da Silva, Carla Thais Candida Alves
Cimini, Christiane Corrêa Rodrigues
Ponce, Daniela
Pereira, Elayne Crestani
Manenti, Euler Roberto Fernandes
Rodrigues, Fernanda d’Athayde
Anschau, Fernando
Botoni, Fernando Antônio
Bartolazzi, Frederico
Grizende, Genna Maira Santos
Noal, Helena Carolina
Duani, Helena
Gomes, Isabela Moraes
Costa, Jamille Hemétrio Salles Martins
di Sabatino Santos Guimarães, Júlia
Tupinambás, Julia Teixeira
Rugolo, Juliana Machado
Batista, Joanna d’Arc Lyra
de Alvarenga, Joice Coutinho
Chatkin, José Miguel
Ruschel, Karen Brasil
Zandoná, Liege Barella
Pinheiro, Lílian Santos
Menezes, Luanna Silva Monteiro
de Oliveira, Lucas Moyses Carvalho
Kopittke, Luciane
Assis, Luisa Argolo
Marques, Luiza Margoto
Raposo, Magda Cesar
Floriani, Maiara Anschau
Bicalho, Maria Aparecida Camargos
Nogueira, Matheus Carvalho Alves
de Oliveira, Neimy Ramos
Ziegelmann, Patricia Klarmann
Paraiso, Pedro Gibson
de Lima Martelli, Petrônio José
Senger, Roberta
Menezes, Rochele Mosmann
Francisco, Saionara Cristina
Araújo, Silvia Ferreira
Kurtz, Tatiana
Fereguetti, Tatiani Oliveira
de Oliveira, Thainara Conceição
Ribeiro, Yara Cristina Neves Marques Barbosa
Ramires, Yuri Carlotto
Lima, Maria Clara Pontello Barbosa
Carneiro, Marcelo
Bezerra, Adriana Falangola Benjamin
Schwarzbold, Alexandre Vargas
de Moura Costa, André Soares
Farace, Barbara Lopes
Silveira, Daniel Vitorio
de Almeida Cenci, Evelin Paola
Lucas, Fernanda Barbosa
Aranha, Fernando Graça
Bastos, Gisele Alsina Nader
Vietta, Giovanna Grunewald
Nascimento, Guilherme Fagundes
Vianna, Heloisa Reniers
Guimarães, Henrique Cerqueira
de Morais, Julia Drumond Parreiras
Moreira, Leila Beltrami
de Oliveira, Leonardo Seixas
de Deus Sousa, Lucas
de Souza Viana, Luciano
de Souza Cabral, Máderson Alvares
Ferreira, Maria Angélica Pires
de Godoy, Mariana Frizzo
de Figueiredo, Meire Pereira
Guimarães-Junior, Milton Henriques
de Paula de Sordi, Mônica Aparecida
da Cunha Severino Sampaio, Natália
Assaf, Pedro Ledic
Lutkmeier, Raquel
Valacio, Reginaldo Aparecido
Finger, Renan Goulart
de Freitas, Rufino
Guimarães, Silvana Mangeon Meirelles
Oliveira, Talita Fischer
Diniz, Thulio Henrique Oliveira
Gonçalves, Marcos André
Marcolino, Milena Soriano
Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title_full Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title_fullStr Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title_full_unstemmed Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title_short Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
title_sort potential and limitations of machine meta-learning (ensemble) methods for predicting covid-19 mortality in a large inhospital brazilian dataset
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975879/
https://www.ncbi.nlm.nih.gov/pubmed/36859446
http://dx.doi.org/10.1038/s41598-023-28579-z
work_keys_str_mv AT depaivabrunobarbosamiranda potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT pereirapoliannadelfino potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deandradeclaudiomoisesvaliense potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT gomesvirginiamarareis potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT souzasilvamairavianarego potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT martinskarinapaulamedeirosprado potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT salesthaislorennasouza potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT decarvalhorafaellimarodrigues potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT piresmagdacarvalho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ramoslucasemanuelferreira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT silvarafaeltavares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT defreitasmartinsvieiraalessandra potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT nunesalinegabriellesousa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveirajorgealzira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveiramaurilioamanda potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT scottonanaluizabahiaalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dasilvacarlathaiscandidaalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ciminichristianecorrearodrigues potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT poncedaniela potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT pereiraelaynecrestani potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT manentieulerrobertofernandes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT rodriguesfernandadathayde potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT anschaufernando potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT botonifernandoantonio potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT bartolazzifrederico potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT grizendegennamairasantos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT noalhelenacarolina potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT duanihelena potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT gomesisabelamoraes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT costajamillehemetriosallesmartins potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT disabatinosantosguimaraesjulia potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT tupinambasjuliateixeira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT rugolojulianamachado potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT batistajoannadarclyra potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dealvarengajoicecoutinho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT chatkinjosemiguel potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ruschelkarenbrasil potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT zandonaliegebarella potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT pinheiroliliansantos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT menezesluannasilvamonteiro potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveiralucasmoysescarvalho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT kopittkeluciane potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT assisluisaargolo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT marquesluizamargoto potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT raposomagdacesar potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT florianimaiaraanschau potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT bicalhomariaaparecidacamargos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT nogueiramatheuscarvalhoalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveiraneimyramos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ziegelmannpatriciaklarmann potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT paraisopedrogibson potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT delimamartellipetroniojose potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT sengerroberta potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT menezesrochelemosmann potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT franciscosaionaracristina potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT araujosilviaferreira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT kurtztatiana potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT fereguettitatianioliveira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveirathainaraconceicao potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ribeiroyaracristinanevesmarquesbarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ramiresyuricarlotto potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT limamariaclarapontellobarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT carneiromarcelo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT bezerraadrianafalangolabenjamin potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT schwarzboldalexandrevargas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT demouracostaandresoares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT faracebarbaralopes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT silveiradanielvitorio potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dealmeidacencievelinpaola potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT lucasfernandabarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT aranhafernandograca potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT bastosgiselealsinanader potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT viettagiovannagrunewald potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT nascimentoguilhermefagundes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT viannaheloisareniers potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT guimaraeshenriquecerqueira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT demoraisjuliadrumondparreiras potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT moreiraleilabeltrami potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT deoliveiraleonardoseixas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dedeussousalucas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT desouzavianaluciano potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT desouzacabralmadersonalvares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT ferreiramariaangelicapires potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT degodoymarianafrizzo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT defigueiredomeirepereira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT guimaraesjuniormiltonhenriques potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT depauladesordimonicaaparecida potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dacunhaseverinosampaionatalia potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT assafpedroledic potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT lutkmeierraquel potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT valacioreginaldoaparecido potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT fingerrenangoulart potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT defreitasrufino potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT guimaraessilvanamangeonmeirelles potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT oliveiratalitafischer potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT dinizthuliohenriqueoliveira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT goncalvesmarcosandre potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset
AT marcolinomilenasoriano potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset