Cargando…
Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset
The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering mul...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975879/ https://www.ncbi.nlm.nih.gov/pubmed/36859446 http://dx.doi.org/10.1038/s41598-023-28579-z |
_version_ | 1784898972910878720 |
---|---|
author | de Paiva, Bruno Barbosa Miranda Pereira, Polianna Delfino de Andrade, Claudio Moisés Valiense Gomes, Virginia Mara Reis Souza-Silva, Maira Viana Rego Martins, Karina Paula Medeiros Prado Sales, Thaís Lorenna Souza de Carvalho, Rafael Lima Rodrigues Pires, Magda Carvalho Ramos, Lucas Emanuel Ferreira Silva, Rafael Tavares de Freitas Martins Vieira, Alessandra Nunes, Aline Gabrielle Sousa de Oliveira Jorge, Alzira de Oliveira Maurílio, Amanda Scotton, Ana Luiza Bahia Alves da Silva, Carla Thais Candida Alves Cimini, Christiane Corrêa Rodrigues Ponce, Daniela Pereira, Elayne Crestani Manenti, Euler Roberto Fernandes Rodrigues, Fernanda d’Athayde Anschau, Fernando Botoni, Fernando Antônio Bartolazzi, Frederico Grizende, Genna Maira Santos Noal, Helena Carolina Duani, Helena Gomes, Isabela Moraes Costa, Jamille Hemétrio Salles Martins di Sabatino Santos Guimarães, Júlia Tupinambás, Julia Teixeira Rugolo, Juliana Machado Batista, Joanna d’Arc Lyra de Alvarenga, Joice Coutinho Chatkin, José Miguel Ruschel, Karen Brasil Zandoná, Liege Barella Pinheiro, Lílian Santos Menezes, Luanna Silva Monteiro de Oliveira, Lucas Moyses Carvalho Kopittke, Luciane Assis, Luisa Argolo Marques, Luiza Margoto Raposo, Magda Cesar Floriani, Maiara Anschau Bicalho, Maria Aparecida Camargos Nogueira, Matheus Carvalho Alves de Oliveira, Neimy Ramos Ziegelmann, Patricia Klarmann Paraiso, Pedro Gibson de Lima Martelli, Petrônio José Senger, Roberta Menezes, Rochele Mosmann Francisco, Saionara Cristina Araújo, Silvia Ferreira Kurtz, Tatiana Fereguetti, Tatiani Oliveira de Oliveira, Thainara Conceição Ribeiro, Yara Cristina Neves Marques Barbosa Ramires, Yuri Carlotto Lima, Maria Clara Pontello Barbosa Carneiro, Marcelo Bezerra, Adriana Falangola Benjamin Schwarzbold, Alexandre Vargas de Moura Costa, André Soares Farace, Barbara Lopes Silveira, Daniel Vitorio de Almeida Cenci, Evelin Paola Lucas, Fernanda Barbosa Aranha, Fernando Graça Bastos, Gisele Alsina Nader Vietta, Giovanna Grunewald Nascimento, Guilherme Fagundes Vianna, Heloisa Reniers Guimarães, Henrique Cerqueira de Morais, Julia Drumond Parreiras Moreira, Leila Beltrami de Oliveira, Leonardo Seixas de Deus Sousa, Lucas de Souza Viana, Luciano de Souza Cabral, Máderson Alvares Ferreira, Maria Angélica Pires de Godoy, Mariana Frizzo de Figueiredo, Meire Pereira Guimarães-Junior, Milton Henriques de Paula de Sordi, Mônica Aparecida da Cunha Severino Sampaio, Natália Assaf, Pedro Ledic Lutkmeier, Raquel Valacio, Reginaldo Aparecido Finger, Renan Goulart de Freitas, Rufino Guimarães, Silvana Mangeon Meirelles Oliveira, Talita Fischer Diniz, Thulio Henrique Oliveira Gonçalves, Marcos André Marcolino, Milena Soriano |
author_facet | de Paiva, Bruno Barbosa Miranda Pereira, Polianna Delfino de Andrade, Claudio Moisés Valiense Gomes, Virginia Mara Reis Souza-Silva, Maira Viana Rego Martins, Karina Paula Medeiros Prado Sales, Thaís Lorenna Souza de Carvalho, Rafael Lima Rodrigues Pires, Magda Carvalho Ramos, Lucas Emanuel Ferreira Silva, Rafael Tavares de Freitas Martins Vieira, Alessandra Nunes, Aline Gabrielle Sousa de Oliveira Jorge, Alzira de Oliveira Maurílio, Amanda Scotton, Ana Luiza Bahia Alves da Silva, Carla Thais Candida Alves Cimini, Christiane Corrêa Rodrigues Ponce, Daniela Pereira, Elayne Crestani Manenti, Euler Roberto Fernandes Rodrigues, Fernanda d’Athayde Anschau, Fernando Botoni, Fernando Antônio Bartolazzi, Frederico Grizende, Genna Maira Santos Noal, Helena Carolina Duani, Helena Gomes, Isabela Moraes Costa, Jamille Hemétrio Salles Martins di Sabatino Santos Guimarães, Júlia Tupinambás, Julia Teixeira Rugolo, Juliana Machado Batista, Joanna d’Arc Lyra de Alvarenga, Joice Coutinho Chatkin, José Miguel Ruschel, Karen Brasil Zandoná, Liege Barella Pinheiro, Lílian Santos Menezes, Luanna Silva Monteiro de Oliveira, Lucas Moyses Carvalho Kopittke, Luciane Assis, Luisa Argolo Marques, Luiza Margoto Raposo, Magda Cesar Floriani, Maiara Anschau Bicalho, Maria Aparecida Camargos Nogueira, Matheus Carvalho Alves de Oliveira, Neimy Ramos Ziegelmann, Patricia Klarmann Paraiso, Pedro Gibson de Lima Martelli, Petrônio José Senger, Roberta Menezes, Rochele Mosmann Francisco, Saionara Cristina Araújo, Silvia Ferreira Kurtz, Tatiana Fereguetti, Tatiani Oliveira de Oliveira, Thainara Conceição Ribeiro, Yara Cristina Neves Marques Barbosa Ramires, Yuri Carlotto Lima, Maria Clara Pontello Barbosa Carneiro, Marcelo Bezerra, Adriana Falangola Benjamin Schwarzbold, Alexandre Vargas de Moura Costa, André Soares Farace, Barbara Lopes Silveira, Daniel Vitorio de Almeida Cenci, Evelin Paola Lucas, Fernanda Barbosa Aranha, Fernando Graça Bastos, Gisele Alsina Nader Vietta, Giovanna Grunewald Nascimento, Guilherme Fagundes Vianna, Heloisa Reniers Guimarães, Henrique Cerqueira de Morais, Julia Drumond Parreiras Moreira, Leila Beltrami de Oliveira, Leonardo Seixas de Deus Sousa, Lucas de Souza Viana, Luciano de Souza Cabral, Máderson Alvares Ferreira, Maria Angélica Pires de Godoy, Mariana Frizzo de Figueiredo, Meire Pereira Guimarães-Junior, Milton Henriques de Paula de Sordi, Mônica Aparecida da Cunha Severino Sampaio, Natália Assaf, Pedro Ledic Lutkmeier, Raquel Valacio, Reginaldo Aparecido Finger, Renan Goulart de Freitas, Rufino Guimarães, Silvana Mangeon Meirelles Oliveira, Talita Fischer Diniz, Thulio Henrique Oliveira Gonçalves, Marcos André Marcolino, Milena Soriano |
author_sort | de Paiva, Bruno Barbosa Miranda |
collection | PubMed |
description | The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering multiple techniques to build mortality prediction models, including modern machine learning (neural) algorithms and traditional statistical techniques, as well as meta-learning (ensemble) approaches. This study used a dataset from a multicenter cohort of 10,897 adult Brazilian COVID-19 patients, admitted from March/2020 to November/2021, including patients [median age 60 (interquartile range 48–71), 46% women]. We also proposed new original population-based meta-features that have not been devised in the literature. Stacking has shown to achieve the best results reported in the literature for the death prediction task, improving over previous state-of-the-art by more than 46% in Recall for predicting death, with AUROC 0.826 and MacroF1 of 65.4%. The newly proposed meta-features were highly discriminative of death, but fell short in producing large improvements in final prediction performance, demonstrating that we are possibly on the limits of the prediction capabilities that can be achieved with the current set of ML techniques and (meta-)features. Finally, we investigated how the trained models perform on different hospitals, showing that there are indeed large differences in classifier performance between different hospitals, further making the case that errors are produced by factors that cannot be modeled with the current predictors. |
format | Online Article Text |
id | pubmed-9975879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99758792023-03-01 Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset de Paiva, Bruno Barbosa Miranda Pereira, Polianna Delfino de Andrade, Claudio Moisés Valiense Gomes, Virginia Mara Reis Souza-Silva, Maira Viana Rego Martins, Karina Paula Medeiros Prado Sales, Thaís Lorenna Souza de Carvalho, Rafael Lima Rodrigues Pires, Magda Carvalho Ramos, Lucas Emanuel Ferreira Silva, Rafael Tavares de Freitas Martins Vieira, Alessandra Nunes, Aline Gabrielle Sousa de Oliveira Jorge, Alzira de Oliveira Maurílio, Amanda Scotton, Ana Luiza Bahia Alves da Silva, Carla Thais Candida Alves Cimini, Christiane Corrêa Rodrigues Ponce, Daniela Pereira, Elayne Crestani Manenti, Euler Roberto Fernandes Rodrigues, Fernanda d’Athayde Anschau, Fernando Botoni, Fernando Antônio Bartolazzi, Frederico Grizende, Genna Maira Santos Noal, Helena Carolina Duani, Helena Gomes, Isabela Moraes Costa, Jamille Hemétrio Salles Martins di Sabatino Santos Guimarães, Júlia Tupinambás, Julia Teixeira Rugolo, Juliana Machado Batista, Joanna d’Arc Lyra de Alvarenga, Joice Coutinho Chatkin, José Miguel Ruschel, Karen Brasil Zandoná, Liege Barella Pinheiro, Lílian Santos Menezes, Luanna Silva Monteiro de Oliveira, Lucas Moyses Carvalho Kopittke, Luciane Assis, Luisa Argolo Marques, Luiza Margoto Raposo, Magda Cesar Floriani, Maiara Anschau Bicalho, Maria Aparecida Camargos Nogueira, Matheus Carvalho Alves de Oliveira, Neimy Ramos Ziegelmann, Patricia Klarmann Paraiso, Pedro Gibson de Lima Martelli, Petrônio José Senger, Roberta Menezes, Rochele Mosmann Francisco, Saionara Cristina Araújo, Silvia Ferreira Kurtz, Tatiana Fereguetti, Tatiani Oliveira de Oliveira, Thainara Conceição Ribeiro, Yara Cristina Neves Marques Barbosa Ramires, Yuri Carlotto Lima, Maria Clara Pontello Barbosa Carneiro, Marcelo Bezerra, Adriana Falangola Benjamin Schwarzbold, Alexandre Vargas de Moura Costa, André Soares Farace, Barbara Lopes Silveira, Daniel Vitorio de Almeida Cenci, Evelin Paola Lucas, Fernanda Barbosa Aranha, Fernando Graça Bastos, Gisele Alsina Nader Vietta, Giovanna Grunewald Nascimento, Guilherme Fagundes Vianna, Heloisa Reniers Guimarães, Henrique Cerqueira de Morais, Julia Drumond Parreiras Moreira, Leila Beltrami de Oliveira, Leonardo Seixas de Deus Sousa, Lucas de Souza Viana, Luciano de Souza Cabral, Máderson Alvares Ferreira, Maria Angélica Pires de Godoy, Mariana Frizzo de Figueiredo, Meire Pereira Guimarães-Junior, Milton Henriques de Paula de Sordi, Mônica Aparecida da Cunha Severino Sampaio, Natália Assaf, Pedro Ledic Lutkmeier, Raquel Valacio, Reginaldo Aparecido Finger, Renan Goulart de Freitas, Rufino Guimarães, Silvana Mangeon Meirelles Oliveira, Talita Fischer Diniz, Thulio Henrique Oliveira Gonçalves, Marcos André Marcolino, Milena Soriano Sci Rep Article The majority of early prediction scores and methods to predict COVID-19 mortality are bound by methodological flaws and technological limitations (e.g., the use of a single prediction model). Our aim is to provide a thorough comparative study that tackles those methodological issues, considering multiple techniques to build mortality prediction models, including modern machine learning (neural) algorithms and traditional statistical techniques, as well as meta-learning (ensemble) approaches. This study used a dataset from a multicenter cohort of 10,897 adult Brazilian COVID-19 patients, admitted from March/2020 to November/2021, including patients [median age 60 (interquartile range 48–71), 46% women]. We also proposed new original population-based meta-features that have not been devised in the literature. Stacking has shown to achieve the best results reported in the literature for the death prediction task, improving over previous state-of-the-art by more than 46% in Recall for predicting death, with AUROC 0.826 and MacroF1 of 65.4%. The newly proposed meta-features were highly discriminative of death, but fell short in producing large improvements in final prediction performance, demonstrating that we are possibly on the limits of the prediction capabilities that can be achieved with the current set of ML techniques and (meta-)features. Finally, we investigated how the trained models perform on different hospitals, showing that there are indeed large differences in classifier performance between different hospitals, further making the case that errors are produced by factors that cannot be modeled with the current predictors. Nature Publishing Group UK 2023-03-01 /pmc/articles/PMC9975879/ /pubmed/36859446 http://dx.doi.org/10.1038/s41598-023-28579-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article de Paiva, Bruno Barbosa Miranda Pereira, Polianna Delfino de Andrade, Claudio Moisés Valiense Gomes, Virginia Mara Reis Souza-Silva, Maira Viana Rego Martins, Karina Paula Medeiros Prado Sales, Thaís Lorenna Souza de Carvalho, Rafael Lima Rodrigues Pires, Magda Carvalho Ramos, Lucas Emanuel Ferreira Silva, Rafael Tavares de Freitas Martins Vieira, Alessandra Nunes, Aline Gabrielle Sousa de Oliveira Jorge, Alzira de Oliveira Maurílio, Amanda Scotton, Ana Luiza Bahia Alves da Silva, Carla Thais Candida Alves Cimini, Christiane Corrêa Rodrigues Ponce, Daniela Pereira, Elayne Crestani Manenti, Euler Roberto Fernandes Rodrigues, Fernanda d’Athayde Anschau, Fernando Botoni, Fernando Antônio Bartolazzi, Frederico Grizende, Genna Maira Santos Noal, Helena Carolina Duani, Helena Gomes, Isabela Moraes Costa, Jamille Hemétrio Salles Martins di Sabatino Santos Guimarães, Júlia Tupinambás, Julia Teixeira Rugolo, Juliana Machado Batista, Joanna d’Arc Lyra de Alvarenga, Joice Coutinho Chatkin, José Miguel Ruschel, Karen Brasil Zandoná, Liege Barella Pinheiro, Lílian Santos Menezes, Luanna Silva Monteiro de Oliveira, Lucas Moyses Carvalho Kopittke, Luciane Assis, Luisa Argolo Marques, Luiza Margoto Raposo, Magda Cesar Floriani, Maiara Anschau Bicalho, Maria Aparecida Camargos Nogueira, Matheus Carvalho Alves de Oliveira, Neimy Ramos Ziegelmann, Patricia Klarmann Paraiso, Pedro Gibson de Lima Martelli, Petrônio José Senger, Roberta Menezes, Rochele Mosmann Francisco, Saionara Cristina Araújo, Silvia Ferreira Kurtz, Tatiana Fereguetti, Tatiani Oliveira de Oliveira, Thainara Conceição Ribeiro, Yara Cristina Neves Marques Barbosa Ramires, Yuri Carlotto Lima, Maria Clara Pontello Barbosa Carneiro, Marcelo Bezerra, Adriana Falangola Benjamin Schwarzbold, Alexandre Vargas de Moura Costa, André Soares Farace, Barbara Lopes Silveira, Daniel Vitorio de Almeida Cenci, Evelin Paola Lucas, Fernanda Barbosa Aranha, Fernando Graça Bastos, Gisele Alsina Nader Vietta, Giovanna Grunewald Nascimento, Guilherme Fagundes Vianna, Heloisa Reniers Guimarães, Henrique Cerqueira de Morais, Julia Drumond Parreiras Moreira, Leila Beltrami de Oliveira, Leonardo Seixas de Deus Sousa, Lucas de Souza Viana, Luciano de Souza Cabral, Máderson Alvares Ferreira, Maria Angélica Pires de Godoy, Mariana Frizzo de Figueiredo, Meire Pereira Guimarães-Junior, Milton Henriques de Paula de Sordi, Mônica Aparecida da Cunha Severino Sampaio, Natália Assaf, Pedro Ledic Lutkmeier, Raquel Valacio, Reginaldo Aparecido Finger, Renan Goulart de Freitas, Rufino Guimarães, Silvana Mangeon Meirelles Oliveira, Talita Fischer Diniz, Thulio Henrique Oliveira Gonçalves, Marcos André Marcolino, Milena Soriano Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title | Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title_full | Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title_fullStr | Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title_full_unstemmed | Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title_short | Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset |
title_sort | potential and limitations of machine meta-learning (ensemble) methods for predicting covid-19 mortality in a large inhospital brazilian dataset |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975879/ https://www.ncbi.nlm.nih.gov/pubmed/36859446 http://dx.doi.org/10.1038/s41598-023-28579-z |
work_keys_str_mv | AT depaivabrunobarbosamiranda potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT pereirapoliannadelfino potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deandradeclaudiomoisesvaliense potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT gomesvirginiamarareis potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT souzasilvamairavianarego potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT martinskarinapaulamedeirosprado potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT salesthaislorennasouza potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT decarvalhorafaellimarodrigues potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT piresmagdacarvalho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ramoslucasemanuelferreira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT silvarafaeltavares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT defreitasmartinsvieiraalessandra potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT nunesalinegabriellesousa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveirajorgealzira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveiramaurilioamanda potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT scottonanaluizabahiaalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dasilvacarlathaiscandidaalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ciminichristianecorrearodrigues potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT poncedaniela potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT pereiraelaynecrestani potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT manentieulerrobertofernandes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT rodriguesfernandadathayde potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT anschaufernando potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT botonifernandoantonio potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT bartolazzifrederico potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT grizendegennamairasantos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT noalhelenacarolina potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT duanihelena potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT gomesisabelamoraes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT costajamillehemetriosallesmartins potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT disabatinosantosguimaraesjulia potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT tupinambasjuliateixeira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT rugolojulianamachado potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT batistajoannadarclyra potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dealvarengajoicecoutinho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT chatkinjosemiguel potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ruschelkarenbrasil potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT zandonaliegebarella potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT pinheiroliliansantos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT menezesluannasilvamonteiro potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveiralucasmoysescarvalho potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT kopittkeluciane potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT assisluisaargolo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT marquesluizamargoto potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT raposomagdacesar potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT florianimaiaraanschau potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT bicalhomariaaparecidacamargos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT nogueiramatheuscarvalhoalves potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveiraneimyramos potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ziegelmannpatriciaklarmann potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT paraisopedrogibson potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT delimamartellipetroniojose potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT sengerroberta potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT menezesrochelemosmann potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT franciscosaionaracristina potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT araujosilviaferreira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT kurtztatiana potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT fereguettitatianioliveira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveirathainaraconceicao potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ribeiroyaracristinanevesmarquesbarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ramiresyuricarlotto potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT limamariaclarapontellobarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT carneiromarcelo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT bezerraadrianafalangolabenjamin potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT schwarzboldalexandrevargas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT demouracostaandresoares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT faracebarbaralopes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT silveiradanielvitorio potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dealmeidacencievelinpaola potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT lucasfernandabarbosa potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT aranhafernandograca potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT bastosgiselealsinanader potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT viettagiovannagrunewald potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT nascimentoguilhermefagundes potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT viannaheloisareniers potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT guimaraeshenriquecerqueira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT demoraisjuliadrumondparreiras potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT moreiraleilabeltrami potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT deoliveiraleonardoseixas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dedeussousalucas potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT desouzavianaluciano potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT desouzacabralmadersonalvares potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT ferreiramariaangelicapires potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT degodoymarianafrizzo potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT defigueiredomeirepereira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT guimaraesjuniormiltonhenriques potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT depauladesordimonicaaparecida potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dacunhaseverinosampaionatalia potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT assafpedroledic potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT lutkmeierraquel potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT valacioreginaldoaparecido potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT fingerrenangoulart potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT defreitasrufino potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT guimaraessilvanamangeonmeirelles potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT oliveiratalitafischer potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT dinizthuliohenriqueoliveira potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT goncalvesmarcosandre potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset AT marcolinomilenasoriano potentialandlimitationsofmachinemetalearningensemblemethodsforpredictingcovid19mortalityinalargeinhospitalbraziliandataset |