Cargando…
Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats
BACKGROUND AND PURPOSE: Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. EXPERIMENTAL APPROACH: Whole-brain radiatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976052/ https://www.ncbi.nlm.nih.gov/pubmed/36873276 http://dx.doi.org/10.4103/1735-5362.367798 |
_version_ | 1784899004136423424 |
---|---|
author | Motallebzadeh, Elham Aghighi, Fatemeh Vakili, Zarichehr Talaei, Sayyed Alireza Mohseni, Mehran |
author_facet | Motallebzadeh, Elham Aghighi, Fatemeh Vakili, Zarichehr Talaei, Sayyed Alireza Mohseni, Mehran |
author_sort | Motallebzadeh, Elham |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. EXPERIMENTAL APPROACH: Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. FINDINGS/RESULTS: The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat’s brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. CONCLUSION AND IMPLICATIONS: ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage. |
format | Online Article Text |
id | pubmed-9976052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-99760522023-03-02 Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats Motallebzadeh, Elham Aghighi, Fatemeh Vakili, Zarichehr Talaei, Sayyed Alireza Mohseni, Mehran Res Pharm Sci Original Article BACKGROUND AND PURPOSE: Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. EXPERIMENTAL APPROACH: Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. FINDINGS/RESULTS: The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat’s brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. CONCLUSION AND IMPLICATIONS: ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage. Wolters Kluwer - Medknow 2023-01-19 /pmc/articles/PMC9976052/ /pubmed/36873276 http://dx.doi.org/10.4103/1735-5362.367798 Text en Copyright: © 2023 Research in Pharmaceutical Sciences https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Motallebzadeh, Elham Aghighi, Fatemeh Vakili, Zarichehr Talaei, Sayyed Alireza Mohseni, Mehran Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title | Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title_full | Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title_fullStr | Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title_full_unstemmed | Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title_short | Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
title_sort | neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976052/ https://www.ncbi.nlm.nih.gov/pubmed/36873276 http://dx.doi.org/10.4103/1735-5362.367798 |
work_keys_str_mv | AT motallebzadehelham neuroprotectiveeffectsofalphalipoicacidonradiationinducedbrainsteminjuryinrats AT aghighifatemeh neuroprotectiveeffectsofalphalipoicacidonradiationinducedbrainsteminjuryinrats AT vakilizarichehr neuroprotectiveeffectsofalphalipoicacidonradiationinducedbrainsteminjuryinrats AT talaeisayyedalireza neuroprotectiveeffectsofalphalipoicacidonradiationinducedbrainsteminjuryinrats AT mohsenimehran neuroprotectiveeffectsofalphalipoicacidonradiationinducedbrainsteminjuryinrats |