Cargando…
Detection of epileptic seizures through EEG signals using entropy features and ensemble learning
INTRODUCTION: Epilepsy is a disorder of the central nervous system that is often accompanied by recurrent seizures. World health organization (WHO) estimated that more than 50 million people worldwide suffer from epilepsy. Although electroencephalogram (EEG) signals contain vital physiological and p...
Autores principales: | Dastgoshadeh, Mahshid, Rabiei, Zahra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976189/ https://www.ncbi.nlm.nih.gov/pubmed/36875740 http://dx.doi.org/10.3389/fnhum.2022.1084061 |
Ejemplares similares
-
Quantitative EEG analysis in typical absence seizures: unveiling spectral dynamics and entropy patterns
por: Guerrero-Aranda, Alioth, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
Rapidly Learned Identification of Epileptic Seizures from Sonified EEG
por: Loui, Psyche, et al.
Publicado: (2014) -
Epileptic Seizure Prediction Based on Permutation Entropy
por: Yang, Yanli, et al.
Publicado: (2018)