Cargando…
ZINC-22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery
[Image: see text] Purchasable chemical space has grown rapidly into the tens of billions of molecules, providing unprecedented opportunities for ligand discovery but straining the tools that might exploit these molecules at scale. We have therefore developed ZINC-22, a database of commercially acces...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976280/ https://www.ncbi.nlm.nih.gov/pubmed/36790087 http://dx.doi.org/10.1021/acs.jcim.2c01253 |
_version_ | 1784899027192512512 |
---|---|
author | Tingle, Benjamin I. Tang, Khanh G. Castanon, Mar Gutierrez, John J. Khurelbaatar, Munkhzul Dandarchuluun, Chinzorig Moroz, Yurii S. Irwin, John J. |
author_facet | Tingle, Benjamin I. Tang, Khanh G. Castanon, Mar Gutierrez, John J. Khurelbaatar, Munkhzul Dandarchuluun, Chinzorig Moroz, Yurii S. Irwin, John J. |
author_sort | Tingle, Benjamin I. |
collection | PubMed |
description | [Image: see text] Purchasable chemical space has grown rapidly into the tens of billions of molecules, providing unprecedented opportunities for ligand discovery but straining the tools that might exploit these molecules at scale. We have therefore developed ZINC-22, a database of commercially accessible small molecules derived from multi-billion-scale make-on-demand libraries. The new database and tools enable analog searching in this vast new space via a facile GUI, CartBlanche, drawing on similarity methods that scale sublinearly in the number of molecules. The new library also uses data organization methods, enabling rapid lookup of molecules and their physical properties, including conformations, partial atomic charges, c Log P values, and solvation energies, all crucial for molecule docking, which had become slow with older database organizations in previous versions of ZINC. As the libraries have continued to grow, we have been interested in finding whether molecular diversity has suffered, for instance, because certain scaffolds have come to dominate via easy analoging. This has not occurred thus far, and chemical diversity continues to grow with database size, with a log increase in Bemis–Murcko scaffolds for every two-log unit increase in database size. Most new scaffolds come from compounds with the highest heavy atom count. Finally, we consider the implications for databases like ZINC as the libraries grow toward and beyond the trillion-molecule range. ZINC is freely available to everyone and may be accessed at cartblanche22.docking.org, via Globus, and in the Amazon AWS and Oracle OCI clouds. |
format | Online Article Text |
id | pubmed-9976280 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99762802023-03-02 ZINC-22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery Tingle, Benjamin I. Tang, Khanh G. Castanon, Mar Gutierrez, John J. Khurelbaatar, Munkhzul Dandarchuluun, Chinzorig Moroz, Yurii S. Irwin, John J. J Chem Inf Model [Image: see text] Purchasable chemical space has grown rapidly into the tens of billions of molecules, providing unprecedented opportunities for ligand discovery but straining the tools that might exploit these molecules at scale. We have therefore developed ZINC-22, a database of commercially accessible small molecules derived from multi-billion-scale make-on-demand libraries. The new database and tools enable analog searching in this vast new space via a facile GUI, CartBlanche, drawing on similarity methods that scale sublinearly in the number of molecules. The new library also uses data organization methods, enabling rapid lookup of molecules and their physical properties, including conformations, partial atomic charges, c Log P values, and solvation energies, all crucial for molecule docking, which had become slow with older database organizations in previous versions of ZINC. As the libraries have continued to grow, we have been interested in finding whether molecular diversity has suffered, for instance, because certain scaffolds have come to dominate via easy analoging. This has not occurred thus far, and chemical diversity continues to grow with database size, with a log increase in Bemis–Murcko scaffolds for every two-log unit increase in database size. Most new scaffolds come from compounds with the highest heavy atom count. Finally, we consider the implications for databases like ZINC as the libraries grow toward and beyond the trillion-molecule range. ZINC is freely available to everyone and may be accessed at cartblanche22.docking.org, via Globus, and in the Amazon AWS and Oracle OCI clouds. American Chemical Society 2023-02-15 /pmc/articles/PMC9976280/ /pubmed/36790087 http://dx.doi.org/10.1021/acs.jcim.2c01253 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Tingle, Benjamin I. Tang, Khanh G. Castanon, Mar Gutierrez, John J. Khurelbaatar, Munkhzul Dandarchuluun, Chinzorig Moroz, Yurii S. Irwin, John J. ZINC-22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery |
title | ZINC-22—A
Free Multi-Billion-Scale Database
of Tangible Compounds for Ligand Discovery |
title_full | ZINC-22—A
Free Multi-Billion-Scale Database
of Tangible Compounds for Ligand Discovery |
title_fullStr | ZINC-22—A
Free Multi-Billion-Scale Database
of Tangible Compounds for Ligand Discovery |
title_full_unstemmed | ZINC-22—A
Free Multi-Billion-Scale Database
of Tangible Compounds for Ligand Discovery |
title_short | ZINC-22—A
Free Multi-Billion-Scale Database
of Tangible Compounds for Ligand Discovery |
title_sort | zinc-22—a
free multi-billion-scale database
of tangible compounds for ligand discovery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976280/ https://www.ncbi.nlm.nih.gov/pubmed/36790087 http://dx.doi.org/10.1021/acs.jcim.2c01253 |
work_keys_str_mv | AT tinglebenjamini zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT tangkhanhg zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT castanonmar zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT gutierrezjohnj zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT khurelbaatarmunkhzul zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT dandarchuluunchinzorig zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT morozyuriis zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery AT irwinjohnj zinc22afreemultibillionscaledatabaseoftangiblecompoundsforliganddiscovery |