Cargando…

Heteropolymetallic [FeFe]-Hydrogenase Mimics: Synthesis and Electrochemical Properties

[Image: see text] The synthesis and electrochemical properties of tetranuclear [Fe(2)S(2)]-hydrogenase mimic species containing Pt(II), Ni(II), and Ru(II) complexes have been studied. To this end, a new tetranuclear [Fe(2)S(2)] complex containing a 5,5′-diisocyanide-2,2′-bipyridine bridging ligand h...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres, Alejandro, Collado, Alba, Gómez-Gallego, Mar, de Arellano, Carmen Ramírez, Sierra, Miguel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976291/
https://www.ncbi.nlm.nih.gov/pubmed/36780261
http://dx.doi.org/10.1021/acs.inorgchem.2c03355
Descripción
Sumario:[Image: see text] The synthesis and electrochemical properties of tetranuclear [Fe(2)S(2)]-hydrogenase mimic species containing Pt(II), Ni(II), and Ru(II) complexes have been studied. To this end, a new tetranuclear [Fe(2)S(2)] complex containing a 5,5′-diisocyanide-2,2′-bipyridine bridging ligand has been designed and coordinated to the metal complexes through the bipyridine moiety. Thus, the tetranuclear [Fe(2)S(2)] complex (6) coordinates to Pt(II), Ni(II) and Ru(II) yielding the corresponding metal complexes. The new metal center in the bipyridine linker modulates the electronic communication between the redox-active [Fe(2)S(2)] units. Thus, electrochemical studies and DFT calculations have shown that the presence of metal complexes in the structure strongly affect the electronic communication between the [Fe(2)S(2)] centers. In the case of diphosphine platinum compounds 10, the structure of the phosphine ligand plays a crucial role to facilitate or to hinder the electronic communication between [Fe(2)S(2)] moieties. Compound 10a, bearing a dppe ligand, shows weak electronic communication (ΔE = 170 mV), whereas the interaction is much weaker in the Pt-dppp derivative 10b (ΔE = 80 mV) and virtually negligible in the Pt-dppf complex 10c. The electronic communication is facilitated by incorporation of a Ru-bis(bipyridine) complex, as observed in the BF(4) salt 12 (ΔE = 210 mV) although the reduction of the [FeFe] centers occurs at more negative potentials. Overall, the experimental–computational procedure used in this work allows us to study the electronic interaction between the redox-active centers, which, in turn, can be modulated by a transition metal.