Cargando…
A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile
The semi-empirical formula is an effective method for predicting the motion of rigid projectiles in practical applications due to the simplicity of its theory and the convenience of parameter calibration. The commonly used semi-empirical formula is Forrestal’s form, combining several specific experi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976317/ https://www.ncbi.nlm.nih.gov/pubmed/36873475 http://dx.doi.org/10.1016/j.heliyon.2023.e13582 |
_version_ | 1784899042644328448 |
---|---|
author | Zhang, Zhao Wu, Yanqing Huang, Fenglei |
author_facet | Zhang, Zhao Wu, Yanqing Huang, Fenglei |
author_sort | Zhang, Zhao |
collection | PubMed |
description | The semi-empirical formula is an effective method for predicting the motion of rigid projectiles in practical applications due to the simplicity of its theory and the convenience of parameter calibration. The commonly used semi-empirical formula is Forrestal’s form, combining several specific experimental cases that have been published, we find it exists deficiencies in predicting deceleration histories and the penetration depths of high velocities. To solve this problem, the general penetration resistance is employed to formulate the semi-empirical formula due to the ‘general’ characteristic of the general penetration resistance, and also make an assessment of this semi-empirical through experimental data. The results show that this semi-empirical method, like Forrestal’s form, is not good at predicting high-velocity penetration depth. Thus, it propels us to develop a new semi-empirical formula. To this end, the general penetration resistance is modified with the assumption that the additional mass should be increased with the penetrating velocity and the projectile mass, based on which a new semi-empirical formula is developed. Then, the proposed semi-empirical formula is employed in individual published experimental data of different projectiles and striking velocities as well as different targets. The predictions of the proposed semi-empirical formula show good agreement with the experimental data both in penetration depths and deceleration histories, which also demonstrate the reasonableness of the assumption that the additional mass of rigid projectile increases with penetrating velocity and the projectile mass. |
format | Online Article Text |
id | pubmed-9976317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99763172023-03-02 A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile Zhang, Zhao Wu, Yanqing Huang, Fenglei Heliyon Research Article The semi-empirical formula is an effective method for predicting the motion of rigid projectiles in practical applications due to the simplicity of its theory and the convenience of parameter calibration. The commonly used semi-empirical formula is Forrestal’s form, combining several specific experimental cases that have been published, we find it exists deficiencies in predicting deceleration histories and the penetration depths of high velocities. To solve this problem, the general penetration resistance is employed to formulate the semi-empirical formula due to the ‘general’ characteristic of the general penetration resistance, and also make an assessment of this semi-empirical through experimental data. The results show that this semi-empirical method, like Forrestal’s form, is not good at predicting high-velocity penetration depth. Thus, it propels us to develop a new semi-empirical formula. To this end, the general penetration resistance is modified with the assumption that the additional mass should be increased with the penetrating velocity and the projectile mass, based on which a new semi-empirical formula is developed. Then, the proposed semi-empirical formula is employed in individual published experimental data of different projectiles and striking velocities as well as different targets. The predictions of the proposed semi-empirical formula show good agreement with the experimental data both in penetration depths and deceleration histories, which also demonstrate the reasonableness of the assumption that the additional mass of rigid projectile increases with penetrating velocity and the projectile mass. Elsevier 2023-02-10 /pmc/articles/PMC9976317/ /pubmed/36873475 http://dx.doi.org/10.1016/j.heliyon.2023.e13582 Text en © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Zhang, Zhao Wu, Yanqing Huang, Fenglei A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title | A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title_full | A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title_fullStr | A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title_full_unstemmed | A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title_short | A semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
title_sort | semi-empirical formula based on a modified general penetration resistance for predicting the motion of the rigid projectile |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976317/ https://www.ncbi.nlm.nih.gov/pubmed/36873475 http://dx.doi.org/10.1016/j.heliyon.2023.e13582 |
work_keys_str_mv | AT zhangzhao asemiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile AT wuyanqing asemiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile AT huangfenglei asemiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile AT zhangzhao semiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile AT wuyanqing semiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile AT huangfenglei semiempiricalformulabasedonamodifiedgeneralpenetrationresistanceforpredictingthemotionoftherigidprojectile |